• 暑假第二十七测


    题解:

    第一题,水题,把点拆了,dis[i][j]表示当前在i点经过了j个城市的最小距离,然后建一个大的S,T,跑一遍SPFA就可以了,dijstra巨慢(好多人都被卡了,数据很绝);

    #include<bits/stdc++.h>
    using namespace std;
    const int M = 2005, ME = 1e5;
    const int inf = 2e9;
    int h[M], s[M], t[M], d[M][M], a[M], b[M], S, T, tot, inq[M][M];
    struct sta{
        int x, v, dis;
        bool operator < (const sta &rhs) const{
            return v == rhs.v ? dis > rhs.dis : v > rhs.v;
        }
    };
    struct edge{int nxt, v, w;}G[ME];
    void add(int u, int v, int w){
        G[++tot].v = v; G[tot].nxt = h[u]; G[tot].w = w; h[u] = tot;
    }
    
    
    
    queue <sta> q;
    
    int main(){
        
        freopen("park.in","r",stdin);
        freopen("park.out","w",stdout);
        int V, M, N, E, L;
        scanf("%d%d%d%d%d", &V, &M, &N, &E, &L);
        S = 0, T = V + 1;
        for(int i = 1; i <= M; i++){
            scanf("%d%d", &s[i], &a[i]);
            add(S, s[i], a[i]);
        }
        for(int i = 1; i <= N; i++){
            scanf("%d%d", &t[i], &b[i]);
            add(t[i], T, b[i]);
        }
        for(int i = 1; i <= E; i++){
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            add(u, v, w);
        }
        
        for(int i = 0; i <= T; i++)
            for(int j = 0; j <= T; j++)
                d[i][j] = inf;
        int ts = 0;
        q.push((sta){S, 0});inq[S][0] = 1; d[S][0] = 0;
        while(!q.empty()){
            sta u = q.front(); q.pop(); inq[u.x][u.v] = 0;
            for(int i = h[u.x]; i; i = G[i].nxt){
                if(d[G[i].v][u.v + 1] > d[u.x][u.v] + G[i].w && d[u.x][u.v] + G[i].w <= L){
                    d[G[i].v][u.v + 1] = d[u.x][u.v] + G[i].w;
                    if(!inq[G[i].v][u.v + 1])inq[G[i].v][u.v + 1] = 1, q.push((sta){G[i].v, u.v + 1});
                }
            }
        }
        for(int i = T; i; i--)if(d[T][i] <= L){ts = i;break;}
        //int vv=clock();
        //cout<<cc-tt<<" "<<vv-cc<<endl;
        printf("%d
    ", max(0, ts - 1));
    }
    View Code

    第二题:处理出当前点向右延展第一次可以到那pos[i],那么他随便向右延展都可以;

    所以对于一个查询我们二分找到pos[i]<=rg的最大lf,那么他前面的点都可以;

    贡献就是sum( posi - i + R - i) * (R - posi +1) / 2 - i * (R - posi + 1) * i;

    把式子拆了就成了 1/2 * (  sum(R*R + R  + 2i * (r + 1) )  + sum(posi - posi*posi+ 2*i*posi) )

    前面是常数,后面用前缀和维护;

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    const int M = 1e6 + 10;
    int tmp, cnt, a[M], vis[M], n;
    void add(int c, int d){
        vis[c]+=d;
        if(vis[c] == 1 && d > 0)tmp++;
        if(!vis[c] && d < 0)tmp--;
    }
    ll sum[M], gx[M], pos[M];
    ll binary(ll lf, ll rg, ll k){
        ll ans = 0;
        while(lf <= rg){
            ll mid = (lf + rg) >> 1;
            if(pos[mid] <= k)ans = mid, lf = mid + 1;
            else rg = mid - 1;
        }
        return ans;
    }
    int main(){
        freopen("plan.in","r",stdin);
        freopen("plan.out","w",stdout);
        int m, q;
        scanf("%d%d%d", &n, &m, &q);
        for(int i = 1; i <= n; i++)scanf("%d", a + i);
        int s, t = 0;
        for(s = 1; s <= n;){
            while(tmp < m && t <= n)add(a[++t], 1);
            if(t > n)break;
            pos[s] = t;
            add(a[s], -1);s++;
        }
        for(; s <= n; s++)pos[s] = n + 1;
        for(int i = 1; i <= n; i++){
            gx[i] = pos[i] - pos[i]*pos[i] + 2*i*1LL*pos[i];
            sum[i] = sum[i - 1] + gx[i];
        }
        while(q--){
            ll l, r;
            scanf("%I64d%I64d", &l, &r);
            ll k = binary(l, r, r);
            if(!k){
                printf("0
    ");continue;
            }
            ll r1 = 1LL*(k - l + 1) * (r*r + r);
            ll r2 = -1LL*(r + 1) * (l + k) * (k - l + 1);
            ll ans = sum[k] - sum[l - 1] + r1 + r2;
            printf("%I64d
    ",ans/2);    
            
        }
    }
    View Code

    第三题:期望+状压,又是恶心数论,还是看懂了题解写不出码的那种,直接贴标准code

    #define FIO "card"
    #include <cstdio>
    #define N_MAX 9
    #define M_MAX 64
    #define S_MAX (1 << (N_MAX << 1))
    typedef unsigned long long lnt;
    typedef unsigned unt;
    const unt P = 2000000011;
    inline lnt moc(lnt a) { return a < P ? a : a - P; }
    inline lnt qow(lnt a, unt k)
    {
        static lnt w;
        for (w = 1; k; a = a * a % P, k >>= 1)
            if (k & 1) w = w * a % P;
        return w;
    }
    inline lnt inv(lnt a) { return qow(a, P - 2); }
    const lnt a3[4] = {0, inv(3), moc(2 * inv(3)), 1};
    int n, m, i, k, s;
    struct dat { lnt a, b; } e[M_MAX + 1];
    lnt u, v, p[N_MAX + 1], q[N_MAX + 1], r[N_MAX + 1], f[S_MAX + 1][M_MAX + 1];
    int main()
    {
        freopen(FIO ".in", "r", stdin);
        freopen(FIO ".out", "w", stdout);
        scanf("%d %d", &n, &m);
        v = inv(100 * n);
        p[n] = 1;
        for (i = 0; i < n; ++i)
            scanf("%d", &k), p[i] = k * v % P, p[n] = moc(p[n] - p[i] + P);
        q[n] = 1;
        for (i = 0; i < n; ++i)
            scanf("%d", &k), q[i] = k * v % P, q[n] = moc(q[n] - q[i] + P);
        for (s = (1 << (n << 1)) - 2; s >= 0; --s)
        {
            e[m] = (dat) {1, 0};
            u = q[n], v = 0;
            for (i = 0; i < n; ++i)
            {
                u = moc(u + q[i] * a3[s >> (i << 1) & 3] % P);
                if ((s >> (i << 1) & 3) < 3)
                    v = (v + q[i] * a3[(s >> (i << 1) & 3) ^ 3] % P * f[s + (1 << (i << 1))][m]) % P;
            }
            e[m - 1] = (dat) {u * e[m].a % P, (u * e[m].b + v) % P};
            u = p[n];
            for (i = 0; i < n; ++i)
            {
                u = (u + p[i] * a3[s >> (i << 1) & 3]) % P;
                if ((s >> (i << 1) & 3) < 3)
                    r[i] = p[i] * a3[(s >> (i << 1) & 3) ^ 3] % P;
            }
            for (k = m - 2; k >= 0; --k)
            {
                v = 0;
                for (i = 0; i < n; ++i)
                    if ((s >> (i << 1) & 3) < 3)
                        v = (v + r[i] * f[s + (1 << (i << 1))][k + 1]) % P;
                e[k] = (dat) {u * e[k + 1].a % P, (u * e[k + 1].b + v) % P};
            }
            f[s][0] = inv(moc(1 - e[0].a + P)) * (e[0].a + e[0].b) % P;
            f[s][m] = moc(f[s][0] + 1);
            for (k = 1; k < m; ++k)
                f[s][k] = (e[k].a * f[s][m] + e[k].b) % P;
        }
        printf("%d
    ", int(f[0][m]));
        return 0;
    }
    View Code
  • 相关阅读:
    个人作业十六:找水王
    个人作业十四:第一阶段个人冲刺
    个人作业十三:用户场景描述
    个人作业十二:最大子数组三
    个人作业十一:敏捷开发
    个人作业十:返回子数组二
    个人作业九:返回数组中最大子数组的和
    个人作业八:四则运算四
    个人作业七:四则运算三
    linux系统RAID
  • 原文地址:https://www.cnblogs.com/EdSheeran/p/9556788.html
Copyright © 2020-2023  润新知