• 莫队求区间众数 D. Cut and Stick


    莫队求区间众数

    假设有 (n) 个数,莫队的复杂度是 (n*sqrt(n))

    问题:给你一个 (n) 的序列,有 (m) 次询问,每次询问一个区间 ([l,r]) 出现频率最高的数的次数是多少?

    复杂度: (n*sqrt(n))

    例题:D. Cut and Stick

    题目大意:

    给你一个序列 (a),保证: (a_ileq n) ,每次询问一个区间 ([l,r]) ,你可以把这个区间的数分成 (x) 个集合,设 (siz) = 这个集合的大小,要求任意一个集合内相同数的重复次数小于等于 (left lceil frac{siz}{2} ight ceil) ,问最小的 (x) 是多少?

    题解:

    因为题目难点在于如何求区间出现频率最高的数的次数,所以本篇博客只解决这个问题。

    之前写过一篇博客 D. Cut and Stick 线段树 是用线段树的方法解决的,但是这个办法只能求频率大于等于 (left lceil frac{siz}{2} ight ceil) 的次数,是有一个先决条件的。

    接下来讲的方法是没有任何条件的,只需要复杂度满足即可。

    维护众数的出现次数:用 (cnt[i]) 维护数字i的出现次数,用 (num[i]) 维护出现了 (i) 次的数字有多少个,因此,最大的不为 0 的 (num[]) 的下标即为众数的出现次数。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 3e5 + 10;
    typedef long long ll;
    int a[maxn], pos[maxn] ,vis[maxn],ans[maxn];
    struct node{
        int l, r, id;
    }ex[maxn];
    bool cmp(node a,node b){
        return pos[a.l] == pos[b.l] ? a.r < b.r : pos[a.l] < pos[b.l];
    }
    /*
     * 维护众数的出现次数:用cnt[i]维护数字i的出现次数,用num[i]维护出现了i次的数字有多少个,因此,最大的不为0的num[]的下标即为众数的出现次数。
     */
    int cnt[maxn],num[maxn],Ans;
    void add(int x) {
        --num[cnt[a[x]]], ++num[++cnt[a[x]]];
        while (num[Ans + 1]) ++Ans;
    }
    
    void del(int x) {
        --num[cnt[a[x]]],++num[--cnt[a[x]]];
        while (!num[Ans]) --Ans;
    }
    
    int main() {
        int n, q;
        scanf("%d%d", &n, &q);
        int siz = sqrt(n);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
            pos[i] = i / siz;
        }
        for (int i = 1; i <= q; i++) {
            scanf("%d%d", &ex[i].l, &ex[i].r);
            ex[i].id = i;
        }
        sort(ex + 1, ex + 1 + q, cmp);
        Ans = 0,num[0] = 1;
        int l = 1, r = 0;
        for (int i = 1; i <= q; i++) {
            int ql = ex[i].l, qr = ex[i].r;
            while (r < qr) add(++r);
            while (r > qr) del(r--);
            while (l < ql) del(l++);
            while (l > ql) add(--l);
            ans[ex[i].id] = 2 * Ans - (qr - ql + 1);
        }
        for (int i = 1; i <= q; i++) {
            printf("%d
    ", max(1, ans[i]));
        }
        return 0;
    }
    
  • 相关阅读:
    JS定时刷新页面及跳转页面
    javascript 使用btoa和atob来进行Base64转码和解码
    浏览器好玩的的 console.log
    Jmeter(二十三)Jmeter-Question之“批量造数据”
    性能测试---开发世界的狂野一面
    Jmeter(二十二)Jmeter-Question之“不同线程组之间传递变量”
    Jmeter(二十一)Jmeter常见问题及场景应用
    Jmeter(二十)Beanshell or JSR223
    Jmeter(十九)Logic Controllers 之 Module Controller and Include Controller
    Jmeter(十八)Logic Controllers 之 Random Controller and Random order Controller
  • 原文地址:https://www.cnblogs.com/EchoZQN/p/14691691.html
Copyright © 2020-2023  润新知