• 2017 Multi-University Training Contest


    Ch’s gift

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1354    Accepted Submission(s): 496


    Problem Description
    Mr. Cui is working off-campus and he misses his girl friend very much. After a whole night tossing and turning, he decides to get to his girl friend's city and of course, with well-chosen gifts. He knows neither too low the price could a gift be since his girl friend won't like it, nor too high of it since he might consider not worth to do. So he will only buy gifts whose price is between [a,b].
    There are n cities in the country and (n-1) bi-directional roads. Each city can be reached from any other city. In the ith city, there is a specialty of price ci Cui could buy as a gift. Cui buy at most 1 gift in a city. Cui starts his trip from city s and his girl friend is in city t. As mentioned above, Cui is so hurry that he will choose the quickest way to his girl friend(in other words, he won't pass a city twice) and of course, buy as many as gifts as possible. Now he wants to know, how much money does he need to prepare for all the gifts?
     
    Input
    There are multiple cases.

    For each case:
    The first line contains tow integers n,m(1≤n,m≤10^5), representing the number of cities and the number of situations.
    The second line contains n integers c1,c2,...,cn(1≤ci≤10^9), indicating the price of city i's specialty.
    Then n-1 lines follows. Each line has two integers x,y(1≤x,y≤n), meaning there is road between city x and city y.
    Next m line follows. In each line there are four integers s,t,a,b(1≤s,t≤n;1≤a≤b≤10^9), which indicates start city, end city, lower bound of the price, upper bound of the price, respectively, as the exact meaning mentioned in the description above
     
    Output
    Output m space-separated integers in one line, and the ith number should be the answer to the ith situation.
     
    Sample Input
    5 3
    1 2 1 3 2
    1 2
    2 4
    3 1
    2 5
    4 5 1 3
    1 1 1 1
    3 5 2 3
    Sample Output
    7 1 4
     
    Source
    分析:由于没有修改操作,一个显然的想法是离线处理所有问题
    将询问拆成1-x,1-y,1-LCA(x,y),则处理的问题转化为从根到节点的链上的问题。
    解决这个问题,我们可以在dfs时向treap插入当前的数,在退出时删除这个数,并且每次维护在该点上的答案。
    当然也可以将所有的查询和点权排序,用树链剖分做这个题,在线段树上面插入就ok。
    下面给出AC代码:
      1 #include<stdio.h>
      2 #include<vector>
      3 #include<string.h>
      4 #include<algorithm>
      5 using namespace std;
      6 #define LL long long
      7 vector<LL> G[100005];
      8 typedef struct
      9 {
     10     LL id;
     11     LL x, y;
     12     LL l, r;
     13 }Quer;
     14 Quer s[100005], cnt[100005];
     15 LL tre[445005];
     16 LL n, val[100005], son[100005], fa[100005], siz[100005], dep[100005];
     17 LL k, top[100005], rak[100005], id[100005], anl[100005], anr[100005];
     18 bool comp1(Quer a, Quer b)
     19 {
     20     if(a.l<b.l)
     21         return 1;
     22     return 0;
     23 }
     24 bool compr(Quer a, Quer b)
     25 {
     26     if(a.r<b.r)
     27         return 1;
     28     return 0;
     29 }
     30 void Sechs(LL u, LL p)
     31 {
     32     LL v, i;
     33     fa[u] = p;
     34     dep[u] = dep[p]+1;
     35     for(i=0;i<G[u].size();i++)
     36     {
     37         v = G[u][i];
     38         if(v==p)
     39             continue;
     40         Sechs(v, u);
     41         siz[u] += siz[v]+1;
     42         if(son[u]==0 || siz[v]>siz[son[u]])
     43             son[u] = v;
     44     }
     45 }
     46 void Sechr(LL u, LL p)
     47 {
     48     LL v, i;
     49     top[u] = p;
     50     rak[u] = ++k, id[k] = u;
     51     if(son[u]==0)
     52         return;
     53     Sechr(son[u], p);
     54     for(i=0;i<G[u].size();i++)
     55     {
     56         v = G[u][i];
     57         if(v==son[u] || v==fa[u])
     58             continue;
     59         Sechr(v, v);
     60     }
     61 }
     62 
     63 void Update(LL l, LL r, LL x, LL a, LL b)
     64 {
     65     LL m;
     66     if(l==r)
     67     {
     68         tre[x] += b;
     69         return;
     70     }
     71     m = (l+r)/2;
     72     if(a<=m)
     73         Update(l, m, x*2, a, b);
     74     else
     75         Update(m+1, r, x*2+1, a, b);
     76     tre[x] = tre[x*2]+tre[x*2+1];
     77 }
     78 LL Query(LL l, LL r, LL x, LL a, LL b)
     79 {
     80     LL m, sum = 0;
     81     if(l>=a && r<=b)
     82         return tre[x];
     83     m = (l+r)/2;
     84     if(a<=m)
     85         sum += Query(l, m, x*2, a, b);
     86     if(b>=m+1)
     87         sum += Query(m+1, r, x*2+1, a, b);
     88     return sum;
     89 }
     90 LL TreQuery(LL x, LL y)
     91 {
     92     LL sum, p1, p2;
     93     p1 = top[x], p2 = top[y], sum = 0;
     94     while(p1!=p2)
     95     {
     96         if(dep[p1]<dep[p2])
     97             swap(p1, p2), swap(x, y);
     98         sum += Query(1, n, 1, rak[p1], rak[x]);
     99         x = fa[p1], p1 = top[x];
    100     }
    101     if(dep[x]>dep[y])
    102         swap(x, y);
    103     sum += Query(1, n, 1, rak[x], rak[y]);
    104     return sum;
    105 }
    106 
    107 int main(void)
    108 {
    109     LL i, j, x, y, q;
    110     while(scanf("%lld%lld", &n, &q)!=EOF)
    111     {
    112         for(i=1;i<=n;i++)
    113             G[i].clear();
    114         for(i=1;i<=n;i++)
    115         {
    116             scanf("%lld", &val[i]);
    117             cnt[i].id = i;
    118             cnt[i].r = val[i];
    119         }
    120         sort(cnt+1, cnt+n+1, compr);
    121         for(i=1;i<=n-1;i++)
    122         {
    123             scanf("%lld%lld", &x, &y);
    124             G[x].push_back(y);
    125             G[y].push_back(x);
    126         }
    127         memset(siz, 0, sizeof(siz));
    128         memset(son, 0, sizeof(son));
    129         k = 0;
    130         Sechs(1, 0);
    131         Sechr(1, 1);
    132         for(i=1;i<=q;i++)
    133         {
    134             scanf("%lld%lld%lld%lld", &s[i].x, &s[i].y, &s[i].l, &s[i].r);
    135             s[i].id = i;
    136         }
    137         
    138         sort(s+1, s+q+1, comp1);
    139         memset(tre, 0, sizeof(tre));
    140         j = 1;
    141         for(i=1;i<=q;i++)
    142         {
    143             while(cnt[j].r<s[i].l && j<=n)
    144             {
    145                 Update(1, n, 1, rak[cnt[j].id], cnt[j].r);
    146                 j += 1;
    147             }
    148             anl[s[i].id] = TreQuery(s[i].x, s[i].y);
    149         }
    150 
    151         sort(s+1, s+q+1, compr);
    152         memset(tre, 0, sizeof(tre));
    153         j = 1;
    154         for(i=1;i<=q;i++)
    155         {
    156             while(cnt[j].r<=s[i].r && j<=n)
    157             {
    158                 Update(1, n, 1, rak[cnt[j].id], cnt[j].r);
    159                 j += 1;
    160             }
    161             anr[s[i].id] = TreQuery(s[i].x, s[i].y);
    162         }
    163 
    164         printf("%lld", anr[1]-anl[1]);
    165         for(i=2;i<=q;i++)
    166             printf(" %lld", anr[i]-anl[i]);
    167         printf("
    ");
    168     }
    169     return 0;
    170 }
  • 相关阅读:
    游戏系统开发笔记(八)——场景对象管理
    dynomite:高可用多数据中心同步
    VBS错误代码释义
    VBScript 内置函数
    在oracle中,select语句查询字段中非纯数字值
    ASP里面令人震撼地自定义Debug类(VBScript)
    调试 ASP 程序脚本
    多文档界面的实现(DotNetBar的superTabControl)
    C#利用tabControl控件实现多窗体嵌入及关闭
    使用MDI窗体实现多窗口效果
  • 原文地址:https://www.cnblogs.com/ECJTUACM-873284962/p/7467265.html
Copyright © 2020-2023  润新知