• 2017 Multi-University Training Contest


    Big binary tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 597    Accepted Submission(s): 207


    Problem Description

    You are given a complete binary tree with n nodes. The root node is numbered 1, and node x's father node is x/2. At the beginning, node x has a value of exactly x. We define the value of a path as the sum of all nodes it passes(including two ends, or one if the path only has one node). Now there are two kinds of operations:
    1.  change u x Set node u's value as x(1≤u≤n;1≤x≤10^10)
    2.  query u Query the max value of all paths which passes node u.
     
    Input
    There are multiple cases.
    For each case:
    The first line contains two integers n,m(1≤n≤10^8,1≤m≤10^5), which represent the size of the tree and the number of operations, respectively.
    Then m lines follows. Each line is an operation with syntax described above.
     
    Output
    For each query operation, output an integer in one line, indicating the max value of all paths which passes the specific node.
     
    Sample Input
    6 13
    query 1
    query 2
    query 3
    query 4
    query 5
    query 6
    change 6 1
    query 1
    query 2
    query 3
    query 4
    query 5
    query 6
    Sample Output
    17
    17
    17
    16
    17
    17
    12
    12
    12
    11
    12
    12
    Source
    分析:考虑dp,f(x)表示从点x开始向下走得到的最大的点权和,查询直接从x开始向上走更新答案即可。
    考虑快速算 f(x) 对于子树内没有被修改过的点的 f(x) 可以快速分类讨论算出,而不满足本条件的点只有 O(mlogm) 个,在hash上dp即可。
    下面给出AC代码:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define pb push_back
     4 #define mkp make_pair
     5 #define fi first
     6 #define se second
     7 #define ll long long
     8 #define M 1000000007
     9 #define all(a) a.begin(), a.end()
    10 
    11 int n, m;
    12 char s[20];
    13 map<int, ll> mp;
    14 map<int, int> amp;
    15 
    16 inline ll askmax(int u){
    17     if(u > n) return 0;
    18     if(mp.count(u)) return mp[u];
    19     else{
    20         int l = u, r = u;
    21         while(l * 2 <= n){
    22             l <<= 1;
    23             r = (r << 1) | 1;
    24         }
    25         r = min(r, n);
    26         ll res = 0;
    27         while(r >= u) res += r, r >>= 1;
    28         return res;
    29     }
    30 }
    31 
    32 inline int ask(int x){
    33     return amp.count(x) ? amp[x] : x;
    34 }
    35 
    36 int main(){
    37     while(~scanf("%d%d", &n, &m)){
    38         mp.clear();
    39         amp.clear();
    40         while(m--){
    41             int x, v;
    42             scanf("%s", s);
    43             if(s[0] == 'c'){
    44                 scanf("%d%d", &x, &v);
    45                 amp[x] = v;
    46                 for(; x; x >>= 1)
    47                     mp[x] = max(askmax(x << 1), askmax((x << 1) | 1)) + ask(x);
    48             }else{
    49                 scanf("%d", &x);
    50                 int px = x;
    51                 ll res = 0, now = 0;
    52                 for(; x >> 1;){
    53                     bool k = ~x & 1; x >>= 1;
    54                     now += ask(x);
    55                     ll tmp = askmax(x << 1 | k);
    56                     if(now + tmp > res) res = now + tmp;
    57                 }
    58                 res += askmax(px);
    59                 res = max(res, askmax(px << 1) + askmax(px << 1 | 1) + ask(px));
    60                 printf("%lld
    ", res);
    61             }
    62         }
    63     }
    64     
    65 #ifndef ONLINE_JUDGE
    66     system("pause");
    67 #endif
    68     return 0;
    69 }
  • 相关阅读:
    【Java基础】9、Enumeration接口和Iterator接口的区别
    【Java基础】4、java中的内部类
    【Java基础】3、Java 位运算(移位、位与、或、异或、非)
    【高并发解决方案】6、数据库水平切分的实现原理解析
    【Java深入研究】6、CGLib动态代理机制详解
    【Java深入研究】4、fail-fast机制
    【Java深入研究】2、JDK 1.8 LinkedList源码解析
    【算法】1、快速排序
    Linux下查看系统版本号信息的方法
    Kubernetes1.2如何使用iptables
  • 原文地址:https://www.cnblogs.com/ECJTUACM-873284962/p/7467251.html
Copyright © 2020-2023  润新知