原题链接在这里:https://leetcode.com/problems/burst-balloons/
题目:
Given n
balloons, indexed from 0
to n-1
. Each balloon is painted with a number on it represented by array nums
. You are asked to burst all the balloons. If the you burst balloon i
you will get nums[left] * nums[i] * nums[right]
coins. Here left
and right
are adjacent indices of i
. After the burst, the left
and right
then becomes adjacent.
Find the maximum coins you can collect by bursting the balloons wisely.
Note:
(1) You may imagine nums[-1] = nums[n] = 1
. They are not real therefore you can not burst them.
(2) 0 ≤ n
≤ 500, 0 ≤ nums[i]
≤ 100
Example:
Given [3, 1, 5, 8]
Return 167
nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
题解:
Let dp[l][r]表示扎破(l, r)范围内所有气球获得的最大硬币数,不含边界.
我们可以想象:最后的剩下一个气球为m的时候,可以获得的分数为 1 * nums[m] * 1.
For all m from l to r, 有 dp[l][r] = max(dp[l][r], dp[l][m] + nums[l] * nums[m] * nums[r] + dp[m][r]).
dp[l][m] get maximum, burst all ballons between l and m.
dp[m][n] get maximum bust all ballons between m and r.
Now it leaves position l, r and m only. nums[l]*nums[m]*nums[r].
Maintain the maximum.
l与r的跨度k从2开始逐渐增大;
三重循环依次枚举范围跨度k, 左边界l, 中点m, 右边界r = l + k
Time Complexity: O(n^3). Space: O(n^2).
AC Java:
1 public class Solution { 2 public int maxCoins(int[] nums) { 3 if(nums == null || nums.length == 0){ 4 return 0; 5 } 6 int len = nums.length+2; 7 int [] newNums = new int[len]; 8 for(int i = 1; i<len-1; i++){ 9 newNums[i] = nums[i-1]; 10 } 11 newNums[0] = 1; 12 newNums[len-1] = 1; 13 14 int [][] dp = new int[len][len]; 15 for(int k = 2; k<len; k++){ 16 for(int l = 0; l<len-k; l++){ 17 int r = l+k; 18 for(int m = l+1; m<r; m++){ 19 dp[l][r] = Math.max(dp[l][r], dp[l][m] + newNums[l]*newNums[m]*newNums[r] +dp[m][r]); 20 } 21 } 22 } 23 return dp[0][len-1]; 24 } 25 }