原题链接在这里:https://leetcode.com/problems/minimum-height-trees/
题目:
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / 2 3
return [1]
Example 2:
Given n = 6
, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2 | / 3 | 4 | 5
return [3, 4]
题解:
与Course Schedule, Course Schedule II类似。
用BFS based topological sort. 从叶子节点开始放入queue中,最后剩下的一个或者两个就是最中心的点.
这里练习undirected graph的topological sort. 用Map<Integer, Set<Integer>>来表示graph, 一条edge, 两头node都需要加graph中.
Time Complexity: O(n+e). Space: O(n+e).
AC Java:
1 class Solution { 2 public List<Integer> findMinHeightTrees(int n, int[][] edges) { 3 List<Integer> res = new ArrayList<Integer>(); 4 if(n == 1){ 5 res.add(0); 6 return res; 7 } 8 9 if(n < 1 || edges == null || edges.length == 0){ 10 return res; 11 } 12 13 HashMap<Integer, HashSet<Integer>> graph = new HashMap<Integer, HashSet<Integer>>(); 14 for(int i = 0; i<n; i++){ 15 graph.put(i, new HashSet<Integer>()); 16 } 17 18 for(int [] edge : edges){ 19 graph.get(edge[0]).add(edge[1]); 20 graph.get(edge[1]).add(edge[0]); 21 } 22 23 LinkedList<Integer> que = new LinkedList<Integer>(); 24 for(Map.Entry<Integer, HashSet<Integer>> entry : graph.entrySet()){ 25 if(entry.getValue().size() == 1){ 26 que.add(entry.getKey()); 27 } 28 } 29 30 while(n > 2){ 31 n -= que.size(); 32 LinkedList<Integer> temp = new LinkedList<Integer>(); 33 34 while(!que.isEmpty()){ 35 int cur = que.poll(); 36 for(int neigh : graph.get(cur)){ 37 graph.get(cur).remove(neigh); 38 graph.get(neigh).remove(cur); 39 40 if(graph.get(neigh).size() == 1){ 41 temp.add(neigh); 42 } 43 } 44 } 45 46 que = temp; 47 } 48 49 res.addAll(que); 50 return res; 51 } 52 }