原题链接在这里:https://leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/
题目:
Given preorder and inorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
题解:
利用preorder 和 inorder来构造树.
e.g. preorder 1, 2, 4, 5, 3, 6, 7
inorder 4, 2, 5, 1, 6, 3, 7
先从preorder里去第一位, 是1, 1就是root.
在inorder里找到1, inorder里1左面的[4, 2, 5]就都是 1的左子树inorder, inorder 里 1右面的[6, 3, 7]就都是1的右子树inorder.
因为[4,2,5]长度为三,在preorder 1 后面的 三个数[2,4,5]就是就是对应左子树的preorder, 在后面的三个数[3,6,7]就是对应右子树的preorder.
重复上面的过程直到对应长度只有一个元素。
可以用HashMap来存储inorder对应的index, 省去每次找到对应点的时间.
Note: 1. Recursion终止条件是L>R 而不是L>=R, 因为只有一个元素时L=R,此时应该返回元素而不是返回null.
2. 题目中没有给其他的 TreeNode constructor, 所以不能用,例如TreeNode() 就不可以.
3. 采用help时, argument 要传HashMap<Integer, Integer> 不能省略<Integer, Integer>. Or it would throw error like Object could not be assigned to int.
Time Complexity: O(n), 每个点访问一次. Space: O(n). HashMap.
AC Java:
1 /** 2 * Definition for a binary tree node. 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */ 10 public class Solution { 11 public TreeNode buildTree(int[] preorder, int[] inorder) { 12 if(preorder == null || preorder.length == 0 || inorder == null || inorder.length == 0){ 13 return null; 14 } 15 HashMap<Integer, Integer> hm = new HashMap<Integer, Integer>(); 16 for(int i = 0; i<inorder.length; i++){ 17 hm.put(inorder[i],i); 18 } 19 return helper(preorder, 0, preorder.length-1, inorder, 0, inorder.length-1, hm); 20 } 21 private TreeNode helper(int[] preorder, int preL, int preR, int[] inorder, int inL, int inR, HashMap<Integer, Integer> hm){ 22 if(preL > preR || inL > inR){ 23 return null; 24 } 25 TreeNode root = new TreeNode(preorder[preL]); 26 int rootIndex = hm.get(preorder[preL]); 27 root.left = helper(preorder, preL+1, preL+rootIndex-inL, inorder, inL, rootIndex-1, hm); 28 root.right = helper(preorder, preL+rootIndex-inL+1, preR, inorder, rootIndex+1, inR, hm); 29 return root; 30 } 31 }
类似Construct Binary Tree from Inorder and Postorder Traversal, Construct Binary Tree from Preorder and Postorder Traversal.