题目链接
https://nanti.jisuanke.com/t/19979
题意
给出n个点 m 条边 求选出最大的点数使得这个点集之间 任意两点不可达 题目中给的边是有向边
思路
这道题 实际上是求 二分图的最大独立集
二分图的最大独立集 = 顶点数 - 二分图最大匹配
相关概念:
https://blog.csdn.net/whosemario/article/details/8513836
那操作就是
先Flyod 跑出 可达矩阵 再二分匹配
答案就是 n - res
AC代码
#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <cmath>
#include <climits>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <map>
#include <stack>
#include <set>
#include <list>
#include <numeric>
#include <sstream>
#include <iomanip>
#include <limits>
#define pb push_back
#define fi first
#define se second
#define L(on) ((on)<<1)
#define R(on) (L(on) | 1)
#define mkp(a, b) make_pair(a, b)
#define bug puts("***bug***");
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define CLR(a, b) memset(a, (b), sizeof(a));
#define syn_close ios::sync_with_stdio(false); cin.tie(0);
#define sp system("pause");
//#define gets gets_s
using namespace std;
typedef long long ll;
typedef long double ld;
typedef long double ld;
typedef unsigned long long ull;
typedef pair <int, int> pii;
typedef pair <double, double> pdd;
typedef pair <ll, ll> pll;
typedef vector <int> vi;
typedef vector <ll> vll;
typedef vector < vi > vvi;
const double PI = acos(-1.0);
const double EI = exp(1.0);
const double eps = 1e-8;
inline int read()
{
char c = getchar(); int ans = 0, vis = 1;
while (c < '0' || c > '9') { if (c == '-') vis = -vis; c = getchar(); }
while (c >= '0' && c <= '9') { ans = ans * 10 + c - '0'; c = getchar(); }
return ans * vis;
}
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fll;
const int maxn = (int)1e2 + 10;
const int MAXN = (int)1e4 + 10;
const ll MOD = (ll)1e9 + 7;
int G[maxn][maxn];
int n, m;
void input()
{
n = read(), m = read();
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
G[i][j] = 0;
int x, y;
for (int i = 0; i < m; i++)
{
x = read() - 1, y = read() - 1;
G[x][y] = 1;
}
}
void Floyd()
{
for (int k = 0; k < n; k++)
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
G[i][j] = (G[i][j] || G[i][k] && G[k][j]);
}
int uN, vN;
int linker[maxn];
bool used[maxn];
bool dfs(int u)
{
for (int v = 0; v < vN; v++)
if (G[u][v] && !used[v])
{
used[v] = true;
if (linker[v] == -1 || dfs(linker[v]))
{
linker[v] = u;
return true;
}
}
return false;
}
int hungary()
{
int res = 0;
CLR(linker, -1);
for (int u = 0; u < uN; u++)
{
CLR(used, false);
if (dfs(u))
res++;
}
return res;
}
void solve()
{
Floyd(); uN = vN = n;
printf("%d
", n - hungary());
}
int main()
{
int t = read();
while (t--)
{
input(); solve();
}
}