• 2019 ICPC Asia Xuzhou Regional


    Contest Info


    Practice Link

    Solved A B C D E F G H I J K L M
    8/13 O - O - O O - O - O - O O
    • O 在比赛中通过
    • Ø 赛后通过
    • ! 尝试了但是失败了
    • - 没有尝试

    Solutions


    A. Cat

    题意:
    每次询问给出(L, R, S),要求找一个最长的连续区间(l, r),满足(l oplus (l + 1) oplus, cdots, oplus r <= S)

    思路:
    考虑(4k oplus (4k + 1) oplus (4k + 2) oplus (4k +3) = 0)
    那么我们枚举一下头,枚举一下尾,暴力判断一下即可。

    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    
    using ll = long long;
    
    const ll INF = 0x3f3f3f3f3f3f3f3f;
    
    ll L, R, S;
    
    ll gao(ll l, ll r) {
    	if (l > r) return INF;
    	ll res = 0;
    	if (r - l + 1 <= 10) {
    		for (ll i = l; i <= r; ++i) {
    			res ^= i;
    		}
    	} else {
    		ll ql = l, qr = r;
    		while (ql % 4 != 0) {
    			res ^= ql;
    			ql++;
    		}
    		while (qr % 4 != 3) {
    			res ^= qr;
    			qr--;
    		}
    	}
    	return res;
    }
    
    int main() {
    	int T;
    	scanf("%d", &T);
    	while (T--) {
    		scanf("%lld %lld %lld", &L, &R, &S);
    		ll res = -1;
    		for (int i = 0; i <= 4; ++i) {
    			for (int j = 0; j <= 4; ++j) {
    				ll tmp = gao(L + i, R - j);
    				if (tmp <= S) res = max(res, (R - j) - (L + i) + 1);
    			}
    		}
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    B. Cats line up

    题意:
    给出(n)个数,问有多少个排列使得任意相邻两个数的差距小于等于(K(1 leq K leq 3))

    C. < 3 numbers

    题意:
    (x)为区间([L, R])内素数个数,每次询问给出([L, R]),判断下式是否成立:

    [egin{eqnarray*} frac{x}{R - L + 1} < frac{1}{3} end{eqnarray*} ]

    思路:
    考虑素数密度,大区间直接'Yes'
    小区间暴力判断

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 1e6 + 10;
    int L, R, pri[N], check[N];
    void sieve() {
    	memset(check, 0, sizeof check);
    	for (int i = 2; i < N; ++i) {
    		if (!check[i]) {
    			pri[++*pri] = i;
    		}
    		for (int j = 1; j <= *pri; ++j) {
    			if (1ll * i * pri[j] >= N) break;
    			check[i * pri[j]] = 1;
    			if (i % pri[j] == 0) break;
    		}
    	}
    }
    
    bool prime(int x) {
    	if (x < N) return !check[x];
    	for (int i = 2; 1ll * i * i <= x; ++i) {
    		if (x % i == 0)
    			return false;
    	}
    	return true;
    }
    
    bool ok(int l, int r) {
    	int tot = r - l + 1;
    	int p = 0;
    	for (int i = l; i <= r; ++i) {
    		if (prime(i)) {
    			++p;
    		}
    	}
    	return p * 3 < tot;
    }
    
    int main() {
    	sieve();
    	int _T; scanf("%d", &_T);
    	while (_T--) {
    		scanf("%d%d", &L, &R);
    		if (R - L + 1 > 60) {
    			puts("Yes");
    		} else {
    			puts(ok(L, R) ? "Yes" : "No");
    		}
    	}
    	return 0;
    }
    

    E. Multiply

    题意:
    给出(n)个数(a_i),令(Z = a_1! imes a_2! imes cdots imes a_n!)
    现在给出(X, Y),令(b_i = Z imes X^i),它想要一个最大的(i),使得(b_i ;|; Y!)

    思路:
    考虑分解(X)得到它的所有素因子及幂次。
    然后找出其每个因子在(frac{Y!}{Z})中还剩多少个。
    然后贪心拼(X)就可以了

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    #define dbg(x...) do { cout << "33[32;1m" << #x << " -> "; err(x); } while (0)
    void err() { cout << "33[39;0m" << endl; }
    template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
    const int N = 2e5 + 10, INF = 0x3f3f3f3f;
    int n; ll x, y, a[N], f[N];
    mt19937 rd(time(0));
    ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
    //ll mul(ll a, ll b, ll p) {
    //	return (a * b - (ll)(a / (long double)p * b + 1e-3) * p + p) % p;
    //}
    ll mul(ll a, ll b, ll p) {
    	return (__int128)a * b % p;
    }
    ll qpow(ll base, ll n, ll p) {
    	ll res = 1;
    	base %= p;
    	while (n) {
    		if (n & 1) {
    			res = mul(res, base, p);
    		}
    		base = mul(base, base, p);
    		n >>= 1;
    	}
    	return res;
    }
    
    struct Mill {
    	ll n, fac[22000][2], bk[22000]; int tot;
    	const int C = 2307;
    	const int S = 8;
    	bool check(ll a, ll n) {
    		ll m = n - 1, x, y = 0;
    		int j = 0;
    		while (!(m & 1)) {
    			m >>= 1;
    			++j;
    		}
    		x = qpow(a, m, n);
    		for (int i = 1; i <= j; x = y, ++i) {
    			y = mul(x, x, n);
    			if (y == 1 && x != 1 && x != n - 1) {
    				return 1;
    			}
    		}
    		return y != 1;
    	}
    	bool miller_rabin(ll n) {
    		if (n < 2) {
    			return 0;
    		} else if (n == 2) {
    			return 1;
    		} else if (!(n & 1)) {
    			return 0;
    		}
    		for (int i = 0; i < S; ++i) {
    			if (check(rd() % (n - 1) + 1, n)) {
    				return 0;
    			}
    		}
    		return 1;
    	}
    	ll pollard_rho(ll n, int c) {
    		ll i = 1, k = 2, x = rd() % n, y = x, d;
    		while (1) {
    			++i; x = (mul(x, x, n) + c) % n;
    			d = gcd(y - x, n);
    			if (d > 1 && d < n) {
    				return d;
    			}
    			if (y == x) {
    				return n;
    			}
    			if (i == k) {
    				y = x;
    				k <<= 1;
    			}
    		}
    	}
    	void findfac(ll n, int c) {
    		if (n == 1) {
    			return;
    		}
    		if (miller_rabin(n)) {
    			bk[++*bk] = n;
    			return;
    		}
    		ll m = n;
    		while (m == n) {
    			m = pollard_rho(n, c--);
    		}
    		findfac(m, c);
    		findfac(n / m, c);
    	}
    	void gao(ll _n) {
    		n = _n; *bk = 0;
    		findfac(n, C);
    		sort(bk + 1, bk + 1 + *bk);
    		fac[1][0] = bk[1];
    		fac[1][1] = 1;
    		tot = 1;
    		for (int i = 2; i <= *bk; ++i) {
    			if (bk[i] == bk[i - 1]) {
    				++fac[tot][1];
    			} else {
    				++tot;
    				fac[tot][0] = bk[i];
    				fac[tot][1] = 1;
    			}
    		}
    	}
    }mill;
    
    int main() {
    	int _T; cin >> _T;
    	while (_T--) {
    		scanf("%d%lld%lld", &n, &x, &y);
    		for (int i = 1; i <= n; ++i) scanf("%lld", a + i);
    		mill.gao(x);
    		int tot = mill.tot;
    		for (int i = 1; i <= tot; ++i) f[i] = 0;
    		ll res = 8e18;
    		for (int i = 1; i <= tot; ++i) {
    //			dbg(mill.fac[i][0], mill.fac[i][1]);
    			ll now = 1;
    			for (int j = 1; now <= y / mill.fac[i][0]; ++j) {
    				now *= mill.fac[i][0];
    				f[i] += (y / now);
    				for (int o = 1; o <= n; ++o) {
    					f[i] -= (a[o] / now);
    				}
    			} 
    			res = min(1ll * res, f[i] / mill.fac[i][1]);
    		}		
    		printf("%lld
    ", res);
    	}
    	return 0;
    }
    

    F. The Answer to the Ultimate Question of Life, The Universe, and Everything.

    题意:
    每次询问给出(x(0 leq x leq 200)),需要找出(a, b, c(|a|, |b|, |c| leq 5000))满足(a^3 + b^3 + c^3 = x)

    思路:
    (x)只有201个,可以暴力打表。
    打表的时候可以枚举两维,第三维直接算。

    打表代码:

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    ll ok(ll need) {
    	ll l = -5000, r = 5000, res = -12345678;
    	while (r - l >= 0) {
    		ll mid = (l + r) >> 1;
    		ll tmp = mid * mid * mid;
    		if (tmp == need) {
    			return mid;
    		}
    		if (tmp > need) {
    			r = mid - 1;
    		} else {
    			l = mid + 1;
    		}
    	}
    	return res;
    }
    
    bool gao(int x) {
    	int limit = 5000;	
    	for (ll a = -limit; a <= limit; ++a) {
    		for (ll b = -limit; b <= limit; ++b) {
    			ll need = 1ll * x - a * a * a - b * b * b;
    			ll c = ok(need);
    			if (abs(c) <= 5000) {
    				cout << a << " " << b << " " << c << endl;
    				return true;
    			}
    		}
    	}
    	return false;
    }
    
    int main() {
    	int cnt = 0;
    	int Y = -12345678;
    	for (int i = 0; i <= 200; ++i) {
    		if (!gao(i)) {
    			cout << Y << " " << Y << " " << Y << endl;
    		}
    	}
    	cout << cnt << " " << cnt << " " << cnt << endl; 
    	return 0;
    }
    
    

    H. Yuuki and a problem

    题意:
    给出一个序列(a_i),支持两个操作:

    • (a_x)改成(y)
    • 询问最小的不能被(a_l cdots a_r)里面的数表示出来的正整数

    思路:
    考虑没有修改操作怎么做:
    主席树权值(i)表示(i)这个数的和.
    然后考虑每次递增上去,假设已经能够表示出([1, x])范围的数,那么我们可以将([1, x + 1])范围内还未加入的数加进去。
    这个可以在主席树上查。
    并且这个加入次数跟斐波那契列类似,不会很多。
    那么有修改,就敲个动态主席树

    注意不要把vector当参数传下去,空间要给够

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    #define dbg(x...) do { cout << "33[32;1m" << #x << " -> "; err(x); } while (0)
    void err() { cout << "33[39;0m" << endl; }
    template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
    const int N = 2e5 + 10;
    int n, m, q, a[N], L[510][510], R[510][510], cl, cr;
    inline int lowbit(int x) { return x & -x; }
    struct SEG {
    	struct node {
    		int ls, rs;
    		ll sum;
    		void init() { ls = rs = sum = 0; }
    	}t[N * 80];
    	int rt[N], tot;
    	ll res;
    	int newnode() {
    		++tot;
    		t[tot].init();
    		return tot;
    	}
    	void init() { memset(rt, 0, sizeof rt); tot = 0; }
    	void update(int &rt, int l, int r, int pos, int v) {
    		if (!rt) rt = newnode();
    		t[rt].sum += v;
    		if (l == r) return;
    		int mid = (l + r) >> 1;
    		if (pos <= mid) update(t[rt].ls, l, mid, pos, v);
    		else update(t[rt].rs, mid + 1, r, pos, v);
    	}
    	void update(int x, int pos, int v) {
    		for (; x <= n; x += lowbit(x)) {
    			update(rt[x], 1, m, pos, v); 
    		}
    	}
    	void query(int dep, int l, int r, int ql, int qr) {
    	    if (ql > qr) return;
    		if (l >= ql && r <= qr) {
    			for (int i = 1; i <= cl; ++i) res -= t[L[dep][i]].sum;
    			for (int i = 1; i <= cr; ++i) res += t[R[dep][i]].sum;
    			return;
    		}	
    		int mid = (l + r) >> 1;
    		if (ql <= mid) {
    			for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].ls;
    			for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].ls;
    			query(dep + 1, l, mid, ql, qr);
    		} 
    		if (qr > mid) {
    			for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].rs;
    			for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].rs;
    			query(dep + 1, mid + 1, r, ql, qr);
    		}
    	}
    }seg;
    
    int main() {
    	m = 2e5;
    	while (scanf("%d%d", &n, &q) != EOF) {
    		for (int i = 1; i <= n; ++i) scanf("%d", a + i);
    		seg.init();
    		for (int i = 1; i <= n; ++i) {
    			seg.update(i, a[i], a[i]); 
    		}
    		int op, x, y;
    		for (int i = 1; i <= q; ++i) {
    			scanf("%d%d%d", &op, &x, &y);
    			if (op == 1) {
    				seg.update(x, a[x], -a[x]);
    				a[x] = y;
    				seg.update(x, a[x], a[x]); 
    			} else {
    				--x;
    				cl = cr = 0;
    				for (int j = x; j; j -= lowbit(j)) {
    					L[0][++cl] = seg.rt[j];
    				}
    				for (int j = y; j; j -= lowbit(j)) {
    					R[0][++cr] = seg.rt[j];
    				}
    				ll l = -1, r = 0;
    				while (1) {
    					seg.res = 0;
    					seg.query(0, 1, m, min(1ll * m + 1, l + 2), min(1ll * m, r + 1));
    					ll tot = seg.res;
    				//	dbg(i, tot, l + 2, r + 1);
    					if (tot == 0) break;
    					l = r;
    					r += tot;
    				}
    				printf("%lld
    ", r + 1);
    			}
    		}
    	}
    	return 0;
    }
    

    J. Loli, Yen-Jen, and a graph problem

    题意:
    给出一个完全图,要将这张图分成(n - 1)条路径,第(i)条路径的长度为(i),并且一条边只能存在于一条路径中。

    代码:

    #include <bits/stdc++.h>
    
    using namespace std;
    #define dbg(x...) do { cout << "33[32;1m" << #x << " -> "; err(x); } while (0)
    void err() { cout << "33[39;0m" << endl; }
    template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
    
    const int N = 1e3 + 10;
    
    int n;
    int e[N][N];
    int Max[N];
    int now;
    vector<vector<int> > vec;
    
    void fix(int x, int y) {
    	e[x][y] = e[y][x] = 1;
    }
    
    int find(int x) {
    	while (e[Max[x]][x]) {
    		++Max[x];
    	}
    	return Max[x];
    }
    
    void insert(int x) {
    	vec[now].push_back(x);
    	if ((int)vec[now].size() == now + 1) {
    		now--;
    		if (now % 2 == 0) vec[now].push_back(x);
    	}
    }
    
    void gao(int x, int y) {
    	insert(x);
    	int ny = y + 1;
    	if (ny > n) return ;
    	insert(ny);
    	gao(x + 1, ny);
    }
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		for (int i = 1; i <= n; ++i) {
    			for (int j = 1; j <= n; ++j) {
    				e[i][j] = (i == j ? 1 : 0);
    			}
    			Max[i] = 1;
    		}
    		vec.clear();
    		vec.resize(n + 1);
    		if (n & 1) {
    			for (int cas = n - 1; cas >= 1; --cas) {
    				vec[cas].push_back(n);
    				int sze = 1;
    				while (sze <= cas) {
    					int nxt = find(vec[cas].end()[-1]);
    					fix(vec[cas].end()[-1], nxt);
    					vec[cas].push_back(nxt);
    					sze++;
    				}
    			}
    			for (int i = 1; i < n; ++i) {
    				for (int j = 0, sze = vec[i].size(); j < sze; ++j) {
    					printf("%d%c", vec[i][j], " 
    "[j == sze - 1]);
    				}
    			} 
    		} else {
    			now = n - 1;
    		//	insert(2);
    		//	gao(1, 2);
    			for (int i = 2; i <= n; i += 2) {
    				insert(i);
    				gao(1, i);
    			}
    			for (int i = 1; i < n; ++i) {
    				for (int j = 0, sze = vec[i].size(); j < sze; ++j) {
    					printf("%d%c", vec[i][j], " 
    "[j == sze - 1]);
    				}
    			}
    		}
    	}
    	return 0;
    }
    

    K. K-rectangle

    题意:
    给出(n)个点((x_i, y_i)(x_i < x_{i + 1}, 0 < y_i))
    现在你要找若干个矩形覆盖这些点,矩形的底边必须在(x)轴上,矩形之间不能有面积交,矩形的花费是(h(w + k))(h)为高,(w)为宽,(k)为给定参数。
    求最小花费。

    L. Loli, Yen-Jen, and a cool problem

    题意:
    给出一个Trie,每次询问给出一个(x_i, L_i),问有多少个结点为起点向上跳(L - 1)步连成的长度为(L)的字符串和以(x_i)为起点连成的字符串相同
    这里的字符在点上,不在边上

    思路:
    多加一个根节点,就能将点上的字符转化成边上的字符
    然后Trie上建SAM,每次查找倍增跳深度最深的合法祖先,它的cnt就是答案

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 3e5 + 10, ALP = 26, M = 20;
    int n, q, trie_pos[N]; char s[N];
    struct SAM {
    	struct node {
    		int maxlen, cnt, fa, nx[ALP];
    		void init() { maxlen = cnt = fa = 0; memset(nx, 0, sizeof nx); }
    	}t[N << 1];
    	int tot, c[N << 1], rk[N << 1], fa[N << 1][M];
    	vector <vector<int>> G;
    	int newnode() {
    		++tot;
    		t[tot].init();
    		return tot;
    	}
    	void init() {
    		tot = 0;
    		newnode();
    	}
    	int extend(int id, int lst, int cnt) {
    		int cur = newnode(), p;
    		t[cur].cnt = cnt;
    		t[cur].maxlen = t[lst].maxlen + 1;
    		for (p = lst; p && !t[p].nx[id]; p = t[p].fa) t[p].nx[id] = cur;
    		if (!p) {
    			t[cur].fa = 1;
    		} else {
    			int q = t[p].nx[id];
    			if (t[q].maxlen == t[p].maxlen + 1) {
    				t[cur].fa = q;
    			} else {
    				int clone = newnode();
    				t[clone] = t[q];
    				t[clone].cnt = 0;
    				t[clone].maxlen = t[p].maxlen + 1;
    				for (; p && t[p].nx[id] == q; p = t[p].fa) t[p].nx[id] = clone;
    				t[cur].fa = t[q].fa = clone; 
    			}
    		}
    		return cur; 
    	} 
    	void dfs(int u) {
    		for (int i = 1; i < M; ++i)
    			fa[u][i] = fa[fa[u][i - 1]][i - 1];
    		for (auto &v : G[u]) {
    			fa[v][0] = u;
    			dfs(v);
    			t[u].cnt += t[v].cnt;
    		}
    	}
    	void build() {
    		memset(c, 0, sizeof c);
    		for (int i = 1; i <= tot; ++i) c[t[i].maxlen]++;
    		for (int i = 1; i <= tot; ++i) c[i] += c[i - 1];
    //		for (int i = 1; i <= tot; ++i) rk[c[t[i].maxlen]--] = i;
    //		for (int i = tot; i; --i) t[t[rk[i]].fa].cnt += t[rk[i]].cnt; 
    		G.clear(); G.resize(tot + 1);
    		for (int i = 1; i <= tot; ++i) {
    			if (t[i].fa) {
    				G[t[i].fa].push_back(i); 
    			}
    		}
    		fa[1][0] = 0;
    		dfs(1);
    	}
    	int query(int x, int len) {
    		for (int i = M - 1; i >= 0; --i) {
    			if (t[fa[x][i]].maxlen >= len) {
    				x = fa[x][i];
    			}	
    		}
    		return t[x].cnt;
    	}
    }sam;
    
    vector <vector<int>> G;
    struct Trie {
    	struct node {
    		int nx[ALP], cnt, sam_pos;
    		void init() { memset(nx, 0, sizeof nx); cnt = 0; sam_pos = 0; }
    	}t[N];
    	int rt, tot;
    	int newnode() {
    		++tot;
    		t[tot].init();
    		return tot;
    	}
    	void init() { tot = 0; rt = newnode(); }
    	int add(int p, int ch) {
    		if (!t[p].nx[ch]) {
    			t[p].nx[ch] = newnode();
    		}
    		int now = t[p].nx[ch];
    		++t[now].cnt;
    		return now;
    	}
    	void dfs(int u) {
    		for (auto &v : G[u]) {
    			trie_pos[v] = add(trie_pos[u], s[v] - 'A');
    			dfs(v);
    		}
    	}
    	void bfs() {
    		queue <int> q;
    		q.push(1);
    		t[1].sam_pos = 1;
    		while (!q.empty()) {
    			int u = q.front(); q.pop();
    			for (int i = 0; i < ALP; ++i) {
    				if (!t[u].nx[i]) continue;
    				int now = t[u].nx[i];
    				t[now].sam_pos = sam.extend(i, t[u].sam_pos, t[now].cnt);
    				q.push(now);
    			}
    		}
    	}
    }trie;
    
    int main() {
    	while (scanf("%d%d", &n, &q) != EOF) {
    		G.clear(); G.resize(n + 1);
    		scanf("%s", s + 1);
    		trie.init();
    		trie_pos[0] = 1;
    		trie_pos[1] = trie.add(trie_pos[0], s[1] - 'A');
    	    for (int u = 2, v; u <= n; ++u) {
    			scanf("%d", &v);
    			G[v].push_back(u);
    		}
    		trie.dfs(1); 	
    		sam.init(); trie.bfs(); sam.build();
    		int x, len;
    		while (q--) {
    			scanf("%d%d", &x, &len);
    			printf("%d
    ", sam.query(trie.t[trie_pos[x]].sam_pos, len));
    		}	
    	}	
    	return 0;
    }
    

    M. Kill the tree

    题意:
    给出一棵有根树,根节点为(1),定义(d(u, v))(u)(v)简单路径的长度,(c(w) = sum_{v in T} d(w, v)),定义结点(w)为一棵树(T)的'critical point',当且仅当(c(w) leq min_{u in T} c(u))
    现在要对于每个(i in [1, n]),要找出以(i)为根节点的子树中的'critical point'

    思路:
    猜想'critical point'就是重心。
    问题转化成找重心。
    我们考虑假设(x)的子树中的所有重心都找出来了:

    • 那么(x)子树的重心不可能在它的轻儿子的子树中,因为选(x)本身肯定更优
    • 并且(x)的重心不可能在它重儿子重心的子树中。
    • 只可能在其重儿子的重心到(x)的路径上

    暴力判断一下即可,每个点只会被判断一次。
    但是这里要求输出所有可能的点,考虑重心最多只有两个,并且是连着的,那么我们找到深度最大的一个,另一个如果存在的话,那么就是它父亲,判一下即可。

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    #define dbg(x...) do { cout << "33[32;1m" << #x << " -> "; err(x); } while (0)
    void err() { cout << "33[39;0m" << endl; }
    template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
    const int N = 2e5 + 10;
    
    int n;
    vector<vector<int> >G;
    int sze[N], fa[N], son[N], res[N];
    
    void dfs(int u, int pre = 0) {
    	sze[u] = 1;
    	fa[u] = pre;
    	for (auto &v : G[u]) {
    		if (v == pre) continue;
    		dfs(v, u);
    		sze[u] += sze[v];
    		if (son[u] == -1 || sze[son[u]] < sze[v]) {
    			son[u] = v;
    		}
    	}
    	if (son[u] == -1) son[u] = u;
    }
    
    void gao(int u) {
    	if (sze[u] == 1) {
    		res[u] = u;
    		return ;
    	}
    	for (auto &v : G[u]) {
    		if (v == fa[u]) continue;
    		gao(v);
    	}
    	int now = res[son[u]];
    	while (now != u) {
    		int tmp = max(sze[u] - sze[now], sze[son[now]]);
    		if (tmp <= sze[u] / 2) {
    			break;
    		}
    		now = fa[now];
    	}
    //	assert(max(sze[u] - sze[now], sze[son[now]]) <= sze[u] / 2);
    	res[u] = now;
    }
    
    int main() {
    	while (scanf("%d", &n) != EOF) {
    		memset(son, -1, sizeof son);
    		G.clear();
    		G.resize(n + 1);
    		for (int i = 1, u, v; i < n; ++i) {
    			scanf("%d %d", &u, &v);
    			G[u].push_back(v);
    			G[v].push_back(u);
    		}
    		dfs(1);
    		gao(1);
    		for (int i = 1; i <= n; ++i) {
    			vector <int> vec;
    			int x = res[i], y = -1;
    			vec.push_back(x);
    			if (x != i) {
    				y = fa[x];
    				if (max(sze[i] - sze[y], sze[son[y]]) <= sze[i] / 2) {
    					vec.push_back(y);
    				}
    			}
    			if (vec.size() > 1 && vec[0] > vec[1]) swap(vec[0], vec[1]);
    			for (int j = 0, sze = vec.size(); j < sze; ++j)
    				printf("%d%c", vec[j], " 
    "[j == sze - 1]);
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    ① ts基础
    ⑦ 原型和原型链 作用域链
    ④ 小程序使用分包
    功能⑦ 小程序整合高德地图定位
    effective OC2.0 52阅读笔记(三 接口与API设计)
    effective OC2.0 52阅读笔记(二 对象、消息、运行期)
    effective OC2.0 52阅读笔记(一 熟悉Objective-C)
    perl的Getopt::Long和pod::usage ?
    安装你自己的perl modules
    Perl 之 use(), require(), do(), %INC and @INC
  • 原文地址:https://www.cnblogs.com/Dup4/p/12005873.html
Copyright © 2020-2023  润新知