[TOC]
Contest Info
[Practice Link](https://atcoder.jp/contests/abc132/tasks)
Solved | A | B | C | D | E | F |
---|---|---|---|---|---|---|
6/6 | O | O | O | O | Ø | O |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- - 没有尝试
Solutions
A. Fifty-Fifty
#include <bits/stdc++.h>
using namespace std;
int main() {
string s; cin >> s;
sort(s.begin(), s.end());
s.erase(unique(s.begin(), s.end()), s.end());
cout << (((int)s.size() == 2) ? "Yes" : "No") << "
";
return 0;
}
B. Ordinary Number
#include <bits/stdc++.h>
using namespace std;
#define N 50
int n, a[N];
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
int res = 0;
for (int i = 2; i < n; ++i) {
int f = a[i] < a[i - 1];
int g = a[i] < a[i + 1];
if (f ^ g) {
++res;
}
}
printf("%d
", res);
}
return 0;
}
C. Divide the Problems
#include <bits/stdc++.h>
using namespace std;
#define N 100010
int n, a[N];
int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
sort(a + 1, a + 1 + n);
int mid = n / 2;
if (a[mid] == a[mid + 1]) {
puts("0");
} else {
printf("%d
", a[mid + 1] - a[mid]);
}
}
return 0;
}
D. Blue and Red Balls
题意: 有$K$个蓝球,$N - K$个红球,询问将蓝球分成$i(1 leq i leq k)$堆,中间用红球隔开的方案数分别是多少?
思路: 考虑先将$k$个蓝球分成$i$堆,然后每堆后面跟着一个红球,然后就有$i + 1$个空隙,剩下的红球相当于要放入$i + 1$个空箱中,允许空箱的经典问题。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 2010
const int p = 1e9 + 7;
int n, k;
ll fac[N], inv[N];
ll qmod(ll base, ll n) {
ll res = 1;
while (n) {
if (n & 1) {
res = res * base % p;
}
base = base * base % p;
n >>= 1;
}
return res;
}
ll C(int n, int m) {
if (n < m) return 0;
return fac[n] * inv[m] % p * inv[n - m] % p;
}
ll f(int n, int i, int k) {
ll remind = n - k;
if (n - k < i - 1) {
return 0;
}
remind -= i - 1;
return C(k - 1, i - 1) * C(i + remind, i) % p;
}
int main() {
fac[0] = 1;
for (int i = 1; i <= 2000; ++i) {
fac[i] = fac[i - 1] * i % p;
}
inv[2000] = qmod(fac[2000], p - 2);
for (int i = 2000; i >= 0; --i) {
inv[i - 1] = inv[i] * i % p;
}
while (scanf("%d%d", &n, &k) != EOF) {
for (int i = 1; i <= k; ++i) {
printf("%lld
", f(n, i, k));
}
}
return 0;
}
E. Hopscotch Addict
题意: 求$S$到$T$的最短路,并且要满足其长度是$3$的倍数。
思路: $dis[i][j]$表示到第$i$个点,长度模$3$的值为$j$的最短路是多少,然后跑Dijkstra即可。
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
int n, m, s, t;
vector <vector<int>> G;
struct node {
int u, w;
node() {}
node (int u, int w) : u(u), w(w) {}
bool operator < (const node &other) const {
return w > other.w;
}
};
int dis[N][3], used[N][3];
void BFS() {
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 3; ++j) {
dis[i][j] = INF;
used[i][j] = 0;
}
}
dis[s][0] = 0;
priority_queue <node> pq;
pq.push(node(s, 0));
while (!pq.empty()) {
int u = pq.top().u, w = pq.top().w; pq.pop();
if (used[u][w % 3]) continue;
used[u][w % 3] = 1;
for (auto v : G[u]) {
if (dis[v][(w + 1) % 3] > w + 1) {
dis[v][(w + 1) % 3] = w + 1;
pq.push(node(v, w + 1));
}
}
}
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
G.clear(); G.resize(n + 1);
for (int i = 1, u, v; i <= m; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
scanf("%d%d", &s, &t);
BFS();
if (dis[t][0] == INF) puts("-1");
else {
printf("%d
", dis[t][0] / 3);
}
}
return 0;
}
F. Small Products
题意: 构造一个长度为$k$的,并且相邻两数之积不超过$N$的序列的方案数是多少?
思路: $f[i][j]$表示到第$i$位,当前位为$j$的方案数是多少。 暴力$DP$显然不行。 但是我们考虑我们每次对于$j$转移的都是$sumlimits_^{N / j} f[i - 1][j]$,考虑到$N / j$的取值只有$2sqrt$种,所以只需要存$k cdot 2sqrt$种状态。转移即可。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 110
#define M 100010
#define pii pair <int, int>
#define fi first
#define se second
const ll p = 1e9 + 7;
int n, k;
ll f[N][M];
pii g[M];
map <int, int> mp;
int main() {
while (scanf("%d%d", &k, &n) != EOF) {
memset(f, 0, sizeof f);
mp.clear();
int m = 0;
for (int i = 1, j; i <= k; i = j + 1) {
j = k / (k / i);
g[++m] = pii(j, j - i + 1);
mp[j] = m;
}
for (int i = 1; i <= m; ++i) {
f[1][i] = (f[1][i - 1] + g[i].se) % p;
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[i][j] = (f[i][j - 1] + 1ll * g[j].se * f[i - 1][mp[k / g[j].fi]] % p) % p;
}
}
printf("%lld
", f[n][m]);
}
return 0;
}