Contest Info
[Practice Link](https://ac.nowcoder.com/acm/contest/140#question)
Solved | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
6/10 | Ø | . | . | Ø | . | . | Ø | Ø | Ø | Ø | . |
- O 在比赛中通过
- Ø 赛后通过
- ! 尝试了但是失败了
- . 没有尝试
Solutions
### A. run
题意:
白云每次可以移动(1)米或者(k)米,询问移动的米数在([L, R])范围内的方案数有多少。
思路:
(dp[i][0/1])表示到第(i)米,是通过(1)米的方式过来的还是(k)米的方式过来的,递推即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 100010
const int p = 1e9 + 7;
int f[N][2], g[N];
int q, k, l, r;
void add(int &x, int y) {
x += y;
if (x >= p) {
x -= p;
}
}
int main() {
scanf("%d%d", &q, &k);
memset(f, 0, sizeof f);
f[0][0] = 1;
for (int i = 0; i <= 100000; ++i) {
add(f[i + 1][0], (f[i][0] + f[i][1]) % p);
if (i + k <= 100000) {
add(f[i + k][1], f[i][0]);
}
}
memset(g, 0, sizeof g);
for (int i = 1; i <= 100000; ++i) {
g[i] = g[i - 1];
add(g[i], f[i][0]);
add(g[i], f[i][1]);
}
while (q--) {
scanf("%d%d", &l, &r);
printf("%d
", (g[r] - g[l - 1] + p) % p);
}
return 0;
}
### D. monrey
题意:
有(n)个物品,从(1)到(n)的顺序去访问,身上最多只能携带一个物品,每次可以买进或者卖出物品,身上有无限的钱,问最后获得的利润最多是多少。
思路:
考虑将买入和卖出合并成一种操作,买入就是减去收益,卖出是增加收益,维护两个堆,遍历(i)个物品。
- 如果当次是买入,那么去找之前收益最高的一个卖出操作,或者直接买入。
- 如果当次是卖出,那么取找之前收益最高的一个买入操作。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
int n, a[N];
struct node {
ll tot; int cnt;
node() {}
node (ll tot, int cnt) : tot(tot), cnt(cnt) {}
bool operator < (const node &other) const {
if (tot == other.tot) {
return cnt > other.cnt;
}
return tot < other.tot;
}
};
int main() {
int T; scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
//0表示上一次操作是买入
//1表示上一次操作是卖出
priority_queue <node> pq[2];
node res = node(0, 0);
pq[0].push(node(-a[1], 1));
node t1, t2;
for (int i = 2; i <= n; ++i) {
pq[0].push(node(-a[i], 1));
if (!pq[0].empty()) {
t1 = pq[0].top();
pq[1].push(node(t1.tot + a[i], t1.cnt + 1));
}
if (!pq[1].empty()) {
t2 = pq[1].top();
pq[0].push(node(t2.tot - a[i], t2.cnt + 1));
}
if (!pq[1].empty()) {
res = max(res, pq[1].top());
}
}
printf("%lld %d
", res.tot, res.cnt);
}
return 0;
}
### G. transform
题意:
一维坐标系上,在(x_i)有(a_i)个物品,每次移动一个物品的代价为(2 cdot abs(x_u - x_v)),现在有(T)元钱,问在不超过(T)的代价下,移动物品使得
在同一个位置上的物品最多。
思路:
显然可以二分物品数量,check的时候枚举左端点,双指针维护右端点,多余的部分从右端回退。
再枚举右端点,反着搞一遍。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 500010
int n, x[N], a[N];
ll sum[N], cost[N];
ll T, L, R, need;
int u;
ll cost_l(int i) {
//将L+1~i的物品移动到i的费用
ll a = (sum[i] - sum[L]) * x[i] - (cost[i] - cost[L]);
//将i+1~R的物品移动到i的费用
ll b = (cost[R] - cost[i]) - x[i] * (sum[R] - sum[i]);
//将多余的物品从R移动到i的费用
ll c = (sum[R] - sum[L] - need) * (x[R] - x[i]);
return a + b - c;
}
ll cost_r(int i) {
//将L+1~i的物品移动到i的费用
ll a = (sum[i] - sum[L]) * x[i] - (cost[i] - cost[L]);
//将i+1~R的物品移动到i的费用
ll b = (cost[R] - cost[i]) - x[i] * (sum[R] - sum[i]);
//将多余的物品从L移动到i的费用
ll c = (sum[R] - sum[L] - need) * (x[i] - x[L + 1]);
return a + b - c;
}
bool check(ll x) {
need = x;
L = 0, R = 1, u = 0;
while (1) {
while (R < n && sum[R] - sum[L] < x) ++R;
if (sum[R] - sum[L] < x) break;
while (u < L) ++u;
while (u < R && cost_l(u) > cost_l(u + 1)) ++u;
if (cost_l(u) <= T) return 1;
++L;
}
L = n - 1, R = n, u = n;
while (1) {
while (L > 0 && sum[R] - sum[L] < x) --L;
if (sum[R] - sum[L] < x) break;
while (u > R) --u;
while (u > L && cost_r(u) > cost_r(u - 1)) --u;
if (cost_r(u) <= T) return 1;
--R;
}
return 0;
}
int main() {
while (scanf("%d%lld", &n, &T) != EOF) {
T /= 2;
for (int i = 1; i <= n; ++i) {
scanf("%d", x + i);
}
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
sum[i] = sum[i - 1] + a[i];
cost[i] = cost[i - 1] + 1ll * a[i] * x[i];
}
ll l = 0, r = sum[n], res = -1;
while (r - l >= 0) {
ll mid = (l + r) >> 1;
if (check(mid)) {
l = mid + 1;
res = mid;
} else {
r = mid - 1;
}
}
printf("%lld
", res);
}
return 0;
}
H. travel
题意:
询问一棵树上三条不相交路径的最大点权和。
思路:
(f[u][x][y])表示以(u)为根的子树中,(u)的状态为(x),已经选了(y)条树链的最大点权和是多少。
三种状态:
- 当前点不选
- 当前点是链的一端
- 当前点是链的拐点,即两条链的交界处
考虑转移:
- 对于(y)的转移可以枚举(y)和(i),可以推出(j)
- 注意(y)和(i)的枚举要降序枚举。
- 对于当前点是拐点,转移过来的可以是链+链,也可以是拐点+不选
- 对于当前点是链,可以是当前点是空,转移过来是链,也可以是当前点是链,转移过来的是空
- 对于当前点不选,那么可以是任何状态转移过来,但是当前点不要选。
- 最后答案是(f[1][0][3])
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 400010
int n, a[N];
vector <vector<int>> G;
// 0 表示当前点不选
// 1 表示当前点链的一端
// 2 表示当前点是拐点
// 第三维表示已经选了0, 1, 2, 3条链
ll f[N][3][4];
void Max(ll &x, ll y) {
if (x < y) x = y;
}
void DFS(int u, int fa) {
f[u][1][0] = a[u];
for (auto v : G[u]) if (v != fa) {
DFS(v, u);
//转移2状态
for (int k = 2; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
//链+链
Max(f[u][2][k], f[u][1][i] + f[v][1][j]);
//拐点+空
Max(f[u][2][k], f[u][2][i] + f[v][0][j]);
}
}
//转移1状态
for (int k = 2; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
Max(f[u][1][k], f[u][0][i] + a[u] + f[v][1][j]);
Max(f[u][1][k], f[u][1][i] + f[v][0][j]);
}
}
//转移0状态
for (int k = 3; ~k; --k) {
for (int i = k, j; ~i; --i) {
j = k - i;
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][0][j]);
if (j) {
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][1][j - 1]);
f[u][0][k] = max(f[u][0][k], f[u][0][i] + f[v][2][j - 1]);
}
}
}
}
for (int k = 3; k; --k) {
Max(f[u][0][k], f[u][1][k - 1]);
Max(f[u][0][k], f[u][2][k - 1]);
}
}
int main() {
while (scanf("%d", &n) != EOF) {
memset(f, 0, sizeof f);
G.clear(); G.resize(n + 1);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = 1, u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
DFS(1, 0);
printf("%lld
", f[1][0][3]);
}
return 0;
}
I. car
题意:
在一个(n cdot n)的二维平面上,要放置尽量多的小车,使得每一俩小车都要直行到它的对面边界,其中有一些障碍物,小车行驶的时候不能相撞,也不能碰到障碍物,
问最多放多少辆小车。
思路:
- 显然每一行每一列最多放一辆小车。
- 假设(a[x][y])有障碍物,那么第(x)行第(y)列都不能有小车。
- 如果(n)是奇数,那么第(frac{n + 1}{2})行,第(frac{n + 1}{2})只能放一辆小车。
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 100010
int n, m;
int vis[N][2];
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
memset(vis, 0, sizeof vis);
for (int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
vis[x][0] = 1;
vis[y][1] = 1;
}
int ans = 0;
if (n & 1) {
if (vis[n / 2 + 1][0] == 0 && vis[n / 2 + 1][1] == 0) {
++ans;
vis[n / 2 + 1][0] = 1;
vis[n / 2 + 1][1] = 1;
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 2; ++j) {
ans += (vis[i][j] == 0);
}
}
printf("%d
", ans);
}
return 0;
}
### J. farm
题意:
在(n cdot m)的农田上,有(n cdot m)棵植物,每棵植物只能施放第(a[i][j])种肥料,有(T)次操作,每次操作时将(x_1, y_1, x_2, y_2)矩形内的作物都施上第(k_i)种肥料,
一旦作物被施上不是第(a[i][j])种肥料,它就会立刻死亡。
问最后死亡的作物数目.
思路一:
考虑:
作物的施肥次数 = 第(a[i][j])种肥料的施肥次数+其他种类肥料的施肥次数。
我们先二维差分求出所有作物的总的施肥次数。
然后将操作按(k_i)分类,用二维BIT维护二维前缀和,表示(k_i)操作下作物的施肥次数。
然后再枚举初始值为(k_i)的所有作物,判断它总的施肥次数以及第(k_i)种肥料的施肥次数是否相等,不相等就挂了。
时间复杂度:(mathcal{O}(nm + T cdot log(n) cdot log(m)))
代码一:
#include <bits/stdc++.h>
using namespace std;
#define N 1000010
#define pii pair <int, int>
#define fi first
#define se second
int n, m, q;
struct node {
int x[2], y[2];
node() {}
node(int x1, int y1, int x2, int y2) {
x[0] = x1; x[1] = x2;
y[0] = y1; y[1] = y2;
}
};
vector < vector <pii> > a;
vector < vector <node> > b;
struct BIT {
vector < vector <int> > a;
void init() {
a.clear();
a.resize(n + 1);
for (int i = 0; i < n + 1; ++i) {
a[i].resize(m + 1);
}
}
void update(int x, int y, int v) {
for (int i = x; i <= n; i += i & -i) {
for (int j = y; j <= m; j += j & -j) {
a[i][j] += v;
}
}
}
void update(int x1, int y1, int x2, int y2, int v) {
update(x1, y1, v);
update(x2 + 1, y2 + 1, v);
update(x1, y2 + 1, -v);
update(x2 + 1, y1, -v);
}
int query(int x, int y) {
int res = 0;
for (int i = x; i > 0; i -= i & -i) {
for (int j = y; j > 0; j -= j & -j) {
res += a[i][j];
}
}
return res;
}
}bit;
void read(int &x) {
x = 0; char ch;
while (!isdigit(ch = getchar()));
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
}
int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear();
a.resize(n * m + 1);
b.clear();
b.resize(n * m + 1);
bit.init();
for (int i = 1; i <= n; ++i) {
for (int j = 1, x; j <= m; ++j) {
read(x);
a[x].emplace_back(i, j);
}
}
for (int i = 1, k, x1, y1, x2, y2; i <= q; ++i) {
read(x1); read(y1); read(x2); read(y2); read(k);
b[k].push_back(node(x1, y1, x2, y2));
bit.update(x1, y1, x2, y2, 1);
}
int res = 0;
for (int i = 1; i <= n * m; ++i) {
for (auto it : b[i]) {
bit.update(it.x[0], it.y[0], it.x[1], it.y[1], -1);
}
for (auto it : a[i]) {
if (bit.query(it.fi, it.se) != 0) {
++res;
}
}
for (auto it : b[i]) {
bit.update(it.x[0], it.y[0], it.x[1], it.y[1], 1);
}
}
printf("%d
", res);
}
return 0;
}
思路二:
考虑每次施肥的时候加上的是(k_i)而不是1,那么最终如果作物没有死,那么它的值应该是(a[i][j] cdot 施肥次数)。
但是这样容易被卡,将权值映射成素数即可。
时间复杂度:(mathcal{O}(n + m + 10^7))
代码二:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 15500010
int prime[1000010], tot;
bool check[N];
void init() {
tot = 0;
memset(check, 0, sizeof check);
for (int i = 2; i < N; ++i) {
if (!check[i]) {
prime[++tot] = i;
if (tot >= 1000000) break;
}
for (int j = 1; j <= tot; ++j) {
if (1ll * i * prime[j] >= N) break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0) {
break;
}
}
}
}
int n, m, q;
vector <vector<int>> a, c;
vector <vector<ll>> b;
template <class T>
void up(vector <vector<T>> &vec, int x1, int y1, int x2, int y2, int v) {
vec[x1][y1] += v;
vec[x2 + 1][y2 + 1] += v;
vec[x1][y2 + 1] -= v;
vec[x2 + 1][y1] -= v;
}
template <class T>
void work(vector <vector<T>> &vec) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
vec[i][j] += vec[i - 1][j] + vec[i][j - 1] - vec[i - 1][j - 1];
}
}
}
int main() {
init();
random_shuffle(prime + 1, prime + 1 + tot);
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear(); a.resize(n + 2, vector <int> (m + 2, 0));
b.clear(); b.resize(n + 2, vector <ll> (m + 2, 0));
c.clear(); c.resize(n + 2, vector <int> (m + 2, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[i][j]);
}
}
int x[2], y[2], k;
while (q--) {
scanf("%d%d%d%d%d", x, y, x + 1, y + 1, &k);
up(b, x[0], y[0], x[1], y[1], prime[k]);
up(c, x[0], y[0], x[1], y[1], 1);
}
work(b); work(c);
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (b[i][j] != c[i][j] * prime[a[i][j]]) {
++res;
}
}
}
printf("%d
", res);
}
return 0;
}
思路三:
依据:
当且仅当(a = b = c)时成立。
增加一个平方验证。
代码三:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
int n, m, q;
vector <vector<int>> a, c;
vector <vector<ll>> b;
template <class T>
void up(vector <vector<T>> &vec, int x1, int y1, int x2, int y2, int v) {
vec[x1][y1] += v;
vec[x2 + 1][y2 + 1] += v;
vec[x1][y2 + 1] -= v;
vec[x2 + 1][y1] -= v;
}
template <class T>
void work(vector <vector<T>> &vec) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
vec[i][j] += vec[i - 1][j] + vec[i][j - 1] - vec[i - 1][j - 1];
}
}
}
void read(int &x) {
x = 0; char ch;
while (!isdigit(ch = getchar()));
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
}
int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
a.clear(); a.resize(n + 2, v ector <int> (m + 2, 0));
b.clear(); b.resize(n + 2, vector <ll> (m + 2, 0));
c.clear(); c.resize(n + 2, vector <int> (m + 2, 0));
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
read(a[i][j]);
}
}
int x[2], y[2], k;
while (q--) {
read(x[0]); read(y[0]); read(x[1]); read(y[1]); read(k);
up(b, x[0], y[0], x[1], y[1], 1ll * k);
up(c, x[0], y[0], x[1], y[1], 1);
}
work(b); work(c);
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (b[i][j] != c[i][j] * a[i][j]) {
++res;
}
}
}
printf("%d
", res);
}
return 0;
}
思路四:
考虑两个数不同,那么它们的二进制位至少有一位是不同的。
那么考虑枚举二进制位,当每次操作的(k_i)的当前二进制上为一时那么施肥。
然后枚举每个作物:
- 如果当前作物的(a[i][j])的二进制位上为(1),如果施肥总次数与当次总次数不同,那么它挂了
- 如果当前作物的(a[i][j])的二进制位上为(0),如果存在施肥次数,那么它挂了
实现的时候开一维数组然后映射二维坐标就过了,开二维vector就T了。。
代码四:
#include <bits/stdc++.h>
using namespace std;
#define N 4000010
#define y1 y_1
int x1[N], y1[N], x2[N], y2[N], k[N];
int n, m, q;
int a[N], b[N], c[N];
bool die[N];
int id(int x, int y) {
return (x - 1) * (m + 2) + y;
}
void up(int *f, int x1, int y1, int x2, int y2, int v) {
f[id(x1, y1)] += v;
f[id(x2 + 1, y2 + 1)] += v;
f[id(x1, y2 + 1)] -= v;
f[id(x2 + 1, y1)] -= v;
}
void work(int *f) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[id(i, j)] += f[id(i - 1, j)] + f[id(i, j - 1)] - f[id(i - 1, j - 1)];
}
}
}
int main() {
while (scanf("%d%d%d", &n, &m, &q) != EOF) {
memset(b, 0, sizeof b);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
scanf("%d", &a[id(i, j)]);
}
}
for (int i = 1; i <= q; ++i) {
scanf("%d%d%d%d%d", x1 + i, y1 + i, x2 + i, y2 + i, k + i);
up(b, x1[i], y1[i], x2[i], y2[i], 1);
}
work(b);
for (int i = 15; i >= 0; --i) {
for (int _i = 1; _i <= n; ++_i) {
for (int _j = 1; _j <= m; ++_j) {
c[id(_i, _j)] = 0;
}
}
for (int j = 1; j <= q; ++j) {
if (k[j] >> i & 1) {
up(c, x1[j], y1[j], x2[j], y2[j], 1);
}
}
work(c);
for (int _i = 1; _i <= n; ++_i) {
for (int _j = 1; _j <= m; ++_j) {
if (a[id(_i, _j)] >> i & 1) {
if (b[id(_i, _j)] != c[id(_i, _j)]) {
die[id(_i, _j)] = 1;
}
} else if (c[id(_i, _j)]) {
die[id(_i, _j)] = 1;
}
}
}
}
int res = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
res += die[id(i, j)];
}
}
printf("%d
", res);
}
return 0;
}