点分治,每次维护出边长模3余0, 1, 2的个数
那么答案就是 $cnt[0] * cnt[0] + cnt[1] * cnt[2] * 2$
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define ll long long 5 #define N 20010 6 int n; 7 int vis[N]; 8 struct Graph 9 { 10 struct node 11 { 12 int to, nx, w; 13 node() {} 14 node(int to, int nx, int w) : to(to), nx(nx), w(w) {} 15 }a[N << 1]; 16 int head[N], pos; 17 void init() 18 { 19 memset(head, 0, sizeof head); 20 pos = 0; 21 } 22 void add(int u, int v, int w) 23 { 24 a[++pos] = node(v, head[u], w); head[u] = pos; 25 a[++pos] = node(u, head[v], w); head[v] = pos; 26 } 27 }G; 28 #define erp(u) for (int it = G.head[u], v = G.a[it].to, w = G.a[it].w; it; it = G.a[it].nx, v = G.a[it].to, w = G.a[it].w) 29 30 int root, sum, sze[N], f[N]; 31 void getroot(int u, int fa) 32 { 33 sze[u] = 1, f[u] = 0; 34 erp(u) if (v != fa && !vis[v]) 35 { 36 getroot(v, u); 37 sze[u] += sze[v]; 38 f[u] = max(f[u], sze[v]); 39 } 40 f[u] = max(f[u], sum - sze[u]); 41 if (f[u] < f[root]) root = u; 42 } 43 44 ll d[N], cnt[3]; 45 void getdeep(int u, int fa) 46 { 47 ++cnt[d[u] % 3]; 48 erp(u) if (v != fa && !vis[v]) 49 { 50 d[v] = d[u] + w; 51 getdeep(v, u); 52 } 53 } 54 55 ll calc(int u, int cost) 56 { 57 d[u] = cost; 58 memset(cnt, 0, sizeof cnt); 59 getdeep(u, 0); 60 return cnt[0] * cnt[0] + cnt[1] * cnt[2] * 2; 61 } 62 63 ll res; 64 void solve(int u) 65 { 66 res += calc(u, 0); 67 vis[u] = 1; 68 erp(u) if (!vis[v]) 69 { 70 res -= calc(v, w); 71 sum = f[0] = sze[v]; 72 root = 0; 73 getroot(v, 0); 74 solve(root); 75 } 76 } 77 78 ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } 79 void Run() 80 { 81 while (scanf("%d", &n) != EOF) 82 { 83 G.init(); res = 0; 84 memset(vis, 0, sizeof vis); 85 for (int i = 1, u, v, w; i < n; ++i) 86 { 87 scanf("%d%d%d", &u, &v, &w); 88 G.add(u, v, w); 89 } 90 sum = f[0] = n; root = 0; 91 getroot(1, 0); 92 solve(root); 93 ll a = res, b = 1ll * n * n; 94 ll GCD = gcd(a, b); 95 a /= GCD, b /= GCD; 96 printf("%lld/%lld ", a, b); 97 } 98 } 99 100 int main() 101 { 102 #ifdef LOCAL 103 freopen("Test.in", "r", stdin); 104 #endif 105 106 Run(); 107 return 0; 108 }