• AtCoder Grand Contest 029 Solution


    A:

    Solved.

    签。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3  
     4 #define ll long long
     5 #define N 200010
     6 char s[N];
     7  
     8 int main()
     9 {
    10     while (scanf("%s", s + 1) != EOF)
    11     {
    12         ll res = 0;
    13         int len = strlen(s + 1); int last = len;
    14         for (int i = len; i >= 1; --i)
    15         {
    16             if (s[i] == 'B') 
    17             {
    18                 res += last - i;
    19                 --last;
    20             }
    21         }
    22         printf("%lld
    ", res);
    23     }
    24     return 0;
    25 }
    View Code

    B:

    Solved.

    签。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3  
     4 #define N 200010
     5 int n, a[N], Bit[50];
     6 unordered_map <int, int> mp; 
     7  
     8 int main()
     9 {
    10     Bit[0] = 1;
    11     for (int i = 1; i <= 30; ++i) Bit[i] = Bit[i - 1] << 1;
    12     while (scanf("%d", &n) != EOF)
    13     {
    14         mp.clear();
    15         for (int i = 1; i <= n; ++i)  
    16         {
    17             scanf("%d", a + i);
    18             ++mp[a[i]];
    19         }
    20         sort(a + 1, a + 1 + n);
    21         int res = 0; 
    22         for (int i = n; i >= 1; --i) 
    23         {
    24             int pos = upper_bound(Bit, Bit + 30, a[i]) - Bit;
    25             //cout << a[i] << " " << Bit[pos] << endl;
    26             if (pos >= 31 || mp[a[i]] == 0) continue;
    27             int tar = Bit[pos] - a[i]; 
    28             if ((tar != a[i] && mp[tar]) || (tar == a[i] && mp[tar] > 1)) 
    29             {
    30                 ++res; 
    31                 --mp[tar];
    32             }    
    33             --mp[a[i]]; 
    34         }
    35         printf("%d
    ", res);
    36     }
    37     return 0;
    38 }
    View Code

    C:

    Unsolved.

    题意:
    一共有n个字符串,给出每个字符串的长度,要求构造这些字符串,使得$S_1 < S_2 < cdots < S_n$

    这里的小于重载为字典序

    D:

    Solved.

    题意:

    在一个棋盘上,A只能向下走,B只能向走

    刚开始一个棋子位于(1, 1)位置,有些地方有障碍物,如果有障碍物或到边界就不能走
    A想要总步数最多,B想要总步数最少,双方都采用最优策略,问A最后最多能走多少步

    思路:

    因为A只能向下走,而且只要下面没有障碍物,他一定会向下走

    那我们维护B最远能走到那里,然后一层一层往下看,如果最远能走的地方大于等于当前层某个障碍物的横坐标

    那么就可以在这层让A停下来

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3  
     4 #define N 200010
     5 int h, w, n;
     6 vector <int> v[N];
     7  
     8 int main()
     9 {
    10     while (scanf("%d%d", &h, &w) != EOF)
    11     {
    12         scanf("%d", &n); 
    13         int res = h; 
    14         for (int i = 1; i <= h; ++i) v[i].clear();     
    15         for (int i = 1, x, y; i <= n; ++i)
    16         {
    17             scanf("%d%d", &x, &y);
    18             v[x].push_back(y);
    19         }
    20         int far = 1; 
    21         for (int i = 2; i <= h; ++i) 
    22         {
    23             if (v[i].empty()) 
    24             {
    25                 ++far;
    26                 continue;
    27             }
    28             sort(v[i].begin(), v[i].end());
    29             if (v[i][0] <= far) 
    30             {
    31                 res = i - 1;
    32                 break;
    33             }
    34             bool flag = true; 
    35             for (auto it : v[i]) if (it == far + 1)
    36                 flag = false;
    37             far += flag; 
    38         }
    39         printf("%d
    ", res); 
    40     }
    41     return 0;
    42 }
    View Code

    E:

    Unsolved.

    题意:

    在一棵树上,有一个人迷路了,在某个地方,他要回到编号为1的结点

    他采用的策略是每次都选择相邻的编号最小的点去走,走不通就回溯,求最后走到结点1的步数为多少

    注意输出n - 1个数,分别为当前处于第$i点,要回到1的步数$

    F:

    Unsolved.

  • 相关阅读:
    [UE4]Spline
    [UE4]Spline Mesh Actor
    SpringBoot的jar包引用外部properties文件
    如何将.crt文件转换为.cer格式
    消息队列之 RabbitMQ
    The last packet successfully received from the server was 8 milliseconds ago.
    DEBUG、INFO、WARN、ERROR、CRITICAL开发日志级别定义
    灰度发布-流程篇
    k8s+istio:流量控制之灰度发布
    微服务、SpringCloud、k8s、Istio杂谈
  • 原文地址:https://www.cnblogs.com/Dup4/p/10131302.html
Copyright © 2020-2023  润新知