• Codeforces Round #526 (Div. 2) Solution


    A. The Fair Nut and Elevator

    Solved.

    签.

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define N 110
     5 int n, a[N];
     6 
     7 int main()
     8 {
     9     while (scanf("%d", &n) != EOF)
    10     {
    11         for (int i = 1; i <= n; ++i) scanf("%d", a + i);
    12         int res = 1e9;
    13         for (int x = 1, tmp = 0; x <= 100; ++x, res = min(res, tmp), tmp = 0) for (int i = 1; i <= n; ++i) if (a[i])
    14         {
    15             tmp += a[i] * (abs(x - i) + abs(i - 1) + abs(x - 1) + abs(x - 1) + abs(i - 1) + abs(x - i)); 
    16         }
    17         printf("%d
    ", res);
    18     }
    19     return 0;
    20 }
    View Code

    B. Kvass and the Fair Nut

    Upsolved.

    题意:

    刚开始题意读错,过了pretest就没管了

    有$n桶啤酒,要从中取出s升,求取出后剩余的量最少的那桶啤酒最大$

    思路:

    二分或者直接算都行

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define ll long long
     5 #define N 1010
     6 int n;
     7 ll s, v[N];
     8 
     9 bool check(ll x)
    10 {
    11     ll tot = 0;
    12     for (int i = 1; i <= n; ++i) 
    13     {
    14         if (v[i] < x) return false;  
    15         tot += v[i] - x;
    16     }
    17     return tot >= s;
    18 }
    19 
    20 int main()
    21 {
    22     while (scanf("%d%lld", &n, &s) != EOF)
    23     {
    24         for (int i = 1; i <= n; ++i) scanf("%lld", v + i);
    25         ll l = 0, r = 1e9, res = -1; 
    26         while (l <= r)
    27         {
    28             ll mid = (l + r) >> 1;
    29             if (check(mid))
    30             {
    31                 res = mid;
    32                 l = mid + 1;
    33             }
    34             else
    35                 r = mid - 1;
    36         }
    37         printf("%lld
    ", res);
    38     }
    39     return 0;
    40 }
    View Code

    C. The Fair Nut and String

    Solved.

    题意:

    有一串字符串,求有多少个字符串,是abababab形式的。

    思路:

    字符不是‘a’ 也不是‘b’ 的话是没用的,然后如果两个'a'之间有多个'b'也没用

    缩短字符串后

    必然是aaabaaababab  这样的形式的

    那么像统计DAG那样统计就没了

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define ll long long
     5 #define N 100010
     6 const ll MOD = (ll)1e9 + 7;
     7 char s[N], t[N];
     8 
     9 int main()
    10 {
    11     while (scanf("%s", s + 1) != EOF)
    12     {
    13         int n = 0; 
    14         for (int i = 1, len = strlen(s + 1); i <= len; ++i) if (s[i] == 'a' || s[i] == 'b')
    15         {
    16             if (s[i] == 'a') t[++n] = 'a';  
    17             else if (s[i] == 'b' && t[n] == 'a') t[++n] = 'b';  
    18         }
    19         if (n == 0)
    20         {
    21             puts("0");
    22             continue;
    23         }
    24         ll res = 1, pre = 1, cnt = 1; 
    25         for (int i = 2; i <= n; ++i)  
    26         {
    27             if (t[i] == 'b') 
    28             {
    29                 pre = (pre * (cnt + 1)) % MOD;
    30                 cnt = 0; 
    31             }    
    32             else 
    33             {
    34                 ++cnt;
    35                 res = (res + pre) % MOD;
    36             }
    37         }
    38         printf("%lld
    ", res);
    39     }
    40     return 0;
    41 }
    View Code

    D. The Fair Nut and the Best Path

    Upsolved.

    题意:

    在一棵树上,每个点是加油站,最多加油$w_i,然后每条边是路,耗费油v_i$

    $定义f(u, v)为u->v的简单路径上每个点都加满油,假设油箱容量无限,最后剩下的油量$

    如果其中某条路上油耗尽了,那么这条路是不可行的

    思路:

    我们把点权视为正直,边权视为负值

    然后就是求任意两点之间的最大权值和

    不需要考虑不合法的路径,因为如果存在不合法的路劲,

    那么肯定存在另一条合法的路径使得答案比它更优。

    令$f[u] 表示到达u的子树中某点的最大权, 这是纵向路径$

    再考虑横向路径即可

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define ll long long
     5 #define N 300010
     6 #define pii pair <int, int>
     7 int n, w[N];
     8 vector <pii> G[N];
     9 ll res, f[N];
    10 
    11 void DFS(int u, int fa)
    12 {
    13     f[u] = w[u];
    14     ll Max[2] = {0, 0};
    15     for (auto it : G[u]) 
    16     {
    17         int v = it.first; 
    18         if (v == fa) continue;
    19         DFS(v, u);
    20         ll cost = it.second;
    21         f[u] = max(f[u], f[v] - cost + w[u]);
    22         ll tmp = f[v] - cost;
    23         if (tmp > Max[0])
    24         {
    25             Max[1] = Max[0];
    26             Max[0] = tmp;
    27         }
    28         else if (tmp > Max[1])
    29             Max[1] = tmp;
    30     }
    31     res = max(res, max(f[u], Max[0] + Max[1] + w[u])); 
    32 }
    33 
    34 int main()
    35 {
    36     while (scanf("%d", &n) != EOF)
    37     {
    38         for (int i = 1; i <= n; ++i) scanf("%d", w + i);
    39         for (int i = 1; i <= n; ++i) G[i].clear();
    40         for (int i = 1, u, v, w; i < n; ++i)
    41         {
    42             scanf("%d%d%d", &u, &v, &w);
    43             G[u].emplace_back(v, w);
    44             G[v].emplace_back(u, w);
    45         }
    46         res = 0;
    47         DFS(1, 1);
    48         printf("%lld
    ", res);
    49     }    
    50     return 0;
    51 }
    View Code

    E. The Fair Nut and Strings

    Upsolved.

    题意:

    一共有$k个长度为n的字符串,他们的范围是[s, t] 之间,按字典序排序$

    求这些字符串(构造k个满足字典序要求的字符串)最多有多少个前缀

    思路:

    相当于给出一棵二叉字典树,给出左右界,叶子节点不超过$k个$

    求最多节点个数

    能扩展就扩展,贪心一下即可

    注意特判$k = 1$

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 
     4 #define ll long long
     5 #define N 500010
     6 int n, k;
     7 char s[N], t[N];
     8 
     9 int main()
    10 {
    11     while (scanf("%d%d", &n, &k) != EOF)
    12     {
    13         scanf("%s%s", s + 1, t + 1);
    14         if (k == 1)
    15         {
    16             printf("%d
    ", n);
    17             continue;
    18         }
    19         int flag = 0;
    20         ll cur = 0, res = 0; k -= 2;
    21         for (int i = 1; i <= n; ++i)
    22         {
    23             if (flag == 0 && s[i] != t[i])
    24                 flag = 1;  
    25             else if (flag == 1)
    26             {
    27                 ll extend = cur;
    28                 if (s[i] == 'a') ++extend;
    29                 if (t[i] == 'b') ++extend; 
    30                 if (extend <= k)
    31                 {
    32                     k -= extend;
    33                     cur += extend;
    34                 }
    35                 else
    36                 {
    37                     cur += k;
    38                     k = 0;
    39                 }
    40             }
    41             res += cur + 1 + flag;
    42         }
    43         printf("%lld
    ", res); 
    44     }
    45     return 0;
    46 }
    View Code

    F. Max Mex

    Upsolved.

    题意:

    一棵树上,两种操作

    $交换两点的p[]值$

    $询问MEX(v(l)), l表示某挑简单路径上权值的集合$

    思路:

    我们考虑将点按权值排序

    我们考虑$1 -> i 和 i + 1 -> j$

    $这两段的合并$

    如果可以合并,那么答案的下限就是$j$

    $树上的路径有三种类型$

    $1、一个点$

    $2、一条链$

    $3、两条链$

    那分情况讨论,一共只有6种情况

    $但是这样太麻烦了$

    $我们考虑这三种状态都可以用两条链的情况来表示$

    $那么合并的时候,一条路径可以用两个点来表示$

    $那么一条路径如果包含另外一条路径的两个端点$

    $那么这条路径就包含另外一条路径$

    $也就是说我们只需要分两次合并另外一条路径的两点即可$

    $这样就只有一种情况$

      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 
      4 #define N 200010
      5 int n, q, p[N];
      6 vector <int> G[N];
      7 
      8 int in[N], out[N];
      9 namespace ST
     10 {
     11     int rmq[N << 1];
     12     int mm[N << 1];
     13     int dp[N << 1][20]; 
     14     int F[N << 1], P[N];
     15     int cnt, cnt2;
     16     void init(int n)
     17     {
     18         mm[0] = -1;
     19         for (int i = 1; i <= n; ++i)
     20         {
     21             mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
     22             dp[i][0] = i;
     23         }
     24         for (int j = 1; j <= mm[n]; ++j)
     25             for (int i = 1; i + (1 << j) - 1 <= n; ++i)
     26             {
     27                 dp[i][j] = rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? 
     28                     dp[i][j - 1] : dp[i + (1 << (j - 1))][j - 1];
     29             }
     30     }
     31     void DFS(int u, int pre, int dep)
     32     {
     33         F[++cnt] = u;
     34         rmq[cnt] = dep;
     35         P[u] = cnt;
     36         in[u] = ++cnt2;
     37         for (auto v : G[u]) if (v != pre)
     38         {
     39             DFS(v, u, dep + 1);
     40             F[++cnt] = u;
     41             rmq[cnt] = dep;
     42         }
     43         out[u] = cnt2;
     44     }
     45     void init(int root, int node_num)
     46     {
     47         cnt = 0; cnt2 = 0;
     48         DFS(root, root, 0);
     49         init(2 * node_num - 1);
     50     }
     51     int query(int a, int b)
     52     {
     53         a = P[a], b = P[b];
     54         if (a > b) swap(a, b);
     55         int k = mm[b - a + 1];
     56         return F[rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ?
     57                     dp[a][k] : dp[b - (1 << k) + 1][k]];
     58     }
     59 }
     60 
     61 namespace SEG
     62 {
     63     struct node
     64     {
     65         int u, v, p;   
     66         void init() { u = v = p = 0; }
     67         node () {} 
     68         node (int u, int v, int p) : u(u), v(v), p(p) {}
     69     }a[N << 2], res; 
     70     int ans;
     71     void init() { memset(a, 0, sizeof a); }
     72     bool anc(int x, int y)
     73     {
     74         return in[x] <= in[y] && out[x] >= out[y];
     75     }
     76     node check(node a, int y)
     77     {
     78         if (a.u == -1 || y == -1) return node(-1, -1, -1);
     79         if (!y) return a;
     80         if (!a.u) return node(y, y, y);
     81         if (!anc(a.u, a.v)) swap(a.u, a.v);
     82         if (anc(a.u, a.v))
     83         {
     84             if (anc(a.u, y))
     85             {
     86                 int p = ST::query(y, a.v);
     87                 if (p == y)
     88                     return a; 
     89                 else if (p == a.u) 
     90                     return node(a.v, y, a.u);
     91                 else if (p == a.v)
     92                     return node(a.u, y, a.u); 
     93                 else
     94                     return node(-1, -1, -1);
     95             }
     96             else if (anc(y, a.u))
     97                 return node(y, a.v, y);
     98             else
     99             {
    100                 int p = ST::query(a.v, y);
    101                 return node(a.v, y, p);
    102             }
    103         }
    104         else if (anc(a.p, y))
    105         {
    106             if (anc(a.u, y))
    107                 return node(y, a.v, a.p);
    108             else if (anc(a.v, y))
    109                 return node(a.u, y, a.p);
    110             else if (anc(y, a.u) || anc(y, a.v))
    111                 return a;
    112             else 
    113                 return node(-1, -1, -1);
    114         }
    115         else
    116             return node(-1, -1, -1); 
    117     }
    118     node merge(node a, node b)
    119     {
    120         a = check(a, b.u);
    121         a = check(a, b.v);
    122         return a;
    123     }
    124     void update(int id, int l, int r, int pos, int v)
    125     {
    126         if (l == r)
    127         {
    128             a[id] = node(v, v, v);   
    129             return;
    130         }
    131         int mid = (l + r) >> 1;
    132         if (pos <= mid) update(id << 1, l, mid, pos, v);
    133         else update(id << 1 | 1, mid + 1, r, pos, v);
    134         a[id] = merge(a[id << 1], a[id << 1 | 1]);
    135     //    printf("%d %d %d %d %d %d
    ", l, r, a[id].t, a[id].u, a[id].v, a[id].p);
    136     //    printf("%d %d %d %d %d %d
    ", l, mid, a[id << 1].t, a[id << 1].u, a[id << 1].v, a[id << 1].p);
    137     //    printf("%d %d %d %d %d %d
    ", mid + 1, r, a[id << 1 | 1].t, a[id << 1 | 1].u, a[id << 1 | 1].v, a[id << 1 | 1].p);
    138     //    puts("*************************************");
    139     }
    140     bool query(int id, int l, int r)
    141     {
    142         node tmp = merge(res, a[id]);
    143     //    printf("bug %d %d %d %d %d
    ", l, r, a[id].u, a[id].v, a[id].p);
    144     //    printf("bug %d %d %d %d %d
    ", l, r, res.u, res.v, res.p);
    145     //    printf("bug %d %d %d %d %d
    ", l, r, tmp.u, tmp.v, tmp.p);
    146     //    puts("**********************");
    147         if (tmp.u != -1) 
    148         {
    149             res = tmp;
    150             ans = r;
    151             return 1;
    152         }
    153         if (l == r) return 0;
    154         int mid = (l + r) >> 1;
    155         if (query(id << 1, l, mid))
    156             query(id << 1 | 1, mid + 1, r);
    157         return 0;
    158     }
    159 }
    160 
    161 int main()
    162 {
    163     while (scanf("%d", &n) != EOF) 
    164     {
    165         for (int i = 1; i <= n; ++i) G[i].clear();
    166         for (int i = 1; i <= n; ++i) scanf("%d", p + i), p[i] += 1;
    167         for (int v = 2, u; v <= n; ++v)
    168         {
    169             scanf("%d", &u);
    170             G[u].push_back(v);
    171             G[v].push_back(u);
    172         }
    173         ST::init(1, n);
    174         SEG::init();
    175         for (int i = 1; i <= n; ++i) 
    176         {
    177             //printf("%d %d
    ", p[i], i);
    178             SEG::update(1, 1, n, p[i], i); 
    179         }
    180         scanf("%d", &q);
    181         for (int i = 1, op, x, y; i <= q; ++i)
    182         {
    183             scanf("%d", &op);
    184             if (op == 1)
    185             {
    186                 scanf("%d%d", &x, &y);
    187                 swap(p[x], p[y]);
    188                 SEG::update(1, 1, n, p[x], x);
    189                 SEG::update(1, 1, n, p[y], y);
    190             }
    191             else
    192             {
    193                 //for (int i = 1; i <= n; ++i) printf("%d%c", p[i], " 
    "[i == n]);
    194                 SEG::res.init(); SEG::ans = 1;
    195                 SEG::query(1, 1, n);
    196                 printf("%d
    ", SEG::ans);
    197             }
    198         }
    199     }
    200     return 0;
    201 }
    View Code
  • 相关阅读:
    软件需求变更管理
    Flex自定义事件
    Flex基础控件Button
    Ext JS高级程序设计》即将隆重上市(预计上市时间:091115)
    迈向工程硕士
    Flex基础控件ComboBox
    ExtJS 4 Beta 2预览:Ext.Brew包
    ExtJS 4 Grid组件
    REST WebService与SOAP WebService的比较
    Step by Step WebMatrix网站开发之一:Webmatrix安装
  • 原文地址:https://www.cnblogs.com/Dup4/p/10107846.html
Copyright © 2020-2023  润新知