• pandas模块


    pandas模块

    pandas官方文档链接
    pandas基于numpy,可以看成是处理文本或表格数据,pandas中主要有Series数据结构,类似于numpy的一维数组,DataFrame类似于多维表格数据结构
    pandas是Python数据分析的核心模块,主要有五大功能

    1. 支持文件存取操作,支持数据库(sql)、html、json、pickle、csv、Excel、sas、hdf等
    2. 支持增删改查、切片、高阶函数、分组聚合等操作,以及dict和list互相转换
    3. 支持多表拼接合并操作
    4. 支持简单绘图操作
    5. 支持简单统计分析操作
    import pandas as pd
    import numpy as np
    
    # Series
    import numpy as np
    import pandas as pd
    
    arr = np.array([1,2,3,4,np.nan])
    print(arr)
    
    [ 1.  2.  3.  4. nan]
    
    s = pd.Series(arr)
    print(s)
    
    0    1.0
    1    2.0
    2    3.0
    3    4.0
    4    NaN
    dtype: float64
    
    # DataFrame
    dates = pd.date_range('20000202',periods = 6)
    print(dates)
    
    DatetimeIndex(['2000-02-02', '2000-02-03', '2000-02-04', '2000-02-05',
                   '2000-02-06', '2000-02-07'],
                  dtype='datetime64[ns]', freq='D')
    
    np.random.seed(1)
    arr = 10*np.random.randn(6,4)
    print(arr)
    
    [[ 16.24345364  -6.11756414  -5.28171752 -10.72968622]
     [  8.65407629 -23.01538697  17.44811764  -7.61206901]
     [  3.19039096  -2.49370375  14.62107937 -20.60140709]
     [ -3.22417204  -3.84054355  11.33769442 -10.99891267]
     [ -1.72428208  -8.77858418   0.42213747   5.82815214]
     [-11.00619177  11.4472371    9.01590721   5.02494339]]
    
    df = pd.DataFrame(arr,index=dates, columns=['c1','c2','c3','c4'])
    df
    
    c1 c2 c3 c4
    2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
    2000-02-03 8.654076 -23.015387 17.448118 -7.612069
    2000-02-04 3.190391 -2.493704 14.621079 -20.601407
    2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
    2000-02-06 -1.724282 -8.778584 0.422137 5.828152
    2000-02-07 -11.006192 11.447237 9.015907 5.024943
    # 使用pandas读取字典形式的数据
    df2=pd.DataFrame({'a':1,'b':[2,3],'c':np.arange(2),'d':'hello'})
    df2
    
    
    a b c d
    0 1 2 0 hello
    1 1 3 1 hello

    DataFrame属性

    属性 详解
    dtype 查看数据类型
    index 查看行序列或者索引
    columns 查看各列的标签
    values 查看数据框内的数据,也即不含表头索引的数据
    describe 查看数据每一列的极值,均值,中位数,只可用于数值型数据
    transpose 转置,也可用T来操作
    sort_index 排序,可按行或列index排序输出
    sort_values 按数据值来排序
    # 查看数据类型
    print(df2.dtypes)
    
    a     int64
    b     int64
    c     int32
    d    object
    dtype: object
    
    df.index
    
    
    DatetimeIndex(['2000-02-02', '2000-02-03', '2000-02-04', '2000-02-05',
                   '2000-02-06', '2000-02-07'],
                  dtype='datetime64[ns]', freq='D')
    
    df.columns
    
    Index(['c1', 'c2', 'c3', 'c4'], dtype='object')
    
    df.values
    
    array([[ 16.24345364,  -6.11756414,  -5.28171752, -10.72968622],
           [  8.65407629, -23.01538697,  17.44811764,  -7.61206901],
           [  3.19039096,  -2.49370375,  14.62107937, -20.60140709],
           [ -3.22417204,  -3.84054355,  11.33769442, -10.99891267],
           [ -1.72428208,  -8.77858418,   0.42213747,   5.82815214],
           [-11.00619177,  11.4472371 ,   9.01590721,   5.02494339]])
    
    df.describe()
    
    c1 c2 c3 c4
    count 6.000000 6.000000 6.000000 6.000000
    mean 2.022213 -5.466424 7.927203 -6.514830
    std 9.580084 11.107772 8.707171 10.227641
    min -11.006192 -23.015387 -5.281718 -20.601407
    25% -2.849200 -8.113329 2.570580 -10.931606
    50% 0.733054 -4.979054 10.176801 -9.170878
    75% 7.288155 -2.830414 13.800233 1.865690
    max 16.243454 11.447237 17.448118 5.828152
    df.T
    
    2000-02-02 00:00:00 2000-02-03 00:00:00 2000-02-04 00:00:00 2000-02-05 00:00:00 2000-02-06 00:00:00 2000-02-07 00:00:00
    c1 16.243454 8.654076 3.190391 -3.224172 -1.724282 -11.006192
    c2 -6.117564 -23.015387 -2.493704 -3.840544 -8.778584 11.447237
    c3 -5.281718 17.448118 14.621079 11.337694 0.422137 9.015907
    c4 -10.729686 -7.612069 -20.601407 -10.998913 5.828152 5.024943
    # 按行标签从大到小排序
    df.sort_index(axis=0)
    
    c1 c2 c3 c4
    2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
    2000-02-03 8.654076 -23.015387 17.448118 -7.612069
    2000-02-04 3.190391 -2.493704 14.621079 -20.601407
    2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
    2000-02-06 -1.724282 -8.778584 0.422137 5.828152
    2000-02-07 -11.006192 11.447237 9.015907 5.024943
    # 按列标签从大到小排列
    df2.sort_index(axis =0)
    
    a b c d
    0 1 2 0 hello
    1 1 3 1 hello
    df2.sort_values(by='a')
    
    a b c d
    0 1 2 0 hello
    1 1 3 1 hello

    DataFrame取值

    df
    
    
    5.1 Unnamed: 1 1.4 0.2
    0 4.9 3.0 1.4 0.2
    1 4.7 3.2 NaN 0.2
    2 7.0 3.2 4.7 1.4
    3 6.4 3.2 4.5 1.5
    4 6.9 3.1 4.9 NaN
    5 NaN NaN NaN NaN
    df['c3']
    
    2000-02-02    -5.281718
    2000-02-03    17.448118
    2000-02-04    14.621079
    2000-02-05    11.337694
    2000-02-06     0.422137
    2000-02-07     9.015907
    Freq: D, Name: c3, dtype: float64
    
    df[0:3]
    
    c1 c2 c3 c4
    2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
    2000-02-03 8.654076 -23.015387 17.448118 -7.612069
    2000-02-04 3.190391 -2.493704 14.621079 -20.601407
    # 通过自定义标签来选择数据
    df.loc['2000-02-02':'2000-02-04']
    
    c1 c2 c3 c4
    2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
    2000-02-03 8.654076 -23.015387 17.448118 -7.612069
    2000-02-04 3.190391 -2.493704 14.621079 -20.601407
    df.values
    
    array([[ 16.24345364,  -6.11756414,  -5.28171752, -10.72968622],
           [  8.65407629, -23.01538697,  17.44811764,  -7.61206901],
           [  3.19039096,  -2.49370375,  14.62107937, -20.60140709],
           [ -3.22417204,  -3.84054355,  11.33769442, -10.99891267],
           [ -1.72428208,  -8.77858418,   0.42213747,   5.82815214],
           [-11.00619177,  11.4472371 ,   9.01590721,   5.02494339]])
    
    df.iloc[2,1]
    
    -2.493703754774101
    
    # 通过行索引选择数据
    print(df.iloc[2,1])
    
    -2.493703754774101
    
    df.iloc[1:4,2:4]  # 行怎么取  列怎么取
    
    c3 c4
    2000-02-03 17.448118 -7.612069
    2000-02-04 14.621079 -20.601407
    2000-02-05 11.337694 -10.998913
    # 使用逻辑替换
    df[df['c1']>0]
    
    c1 c2 c3 c4
    2000-02-02 16.243454 -6.117564 -5.281718 -10.729686
    2000-02-03 8.654076 -23.015387 17.448118 -7.612069
    2000-02-04 3.190391 -2.493704 14.621079 -20.601407
    # DataFrame值替换
    df.iloc[0:3,0:2]
    
    c1 c2
    2000-02-02 16.243454 -6.117564
    2000-02-03 8.654076 -23.015387
    2000-02-04 3.190391 -2.493704
    df[df['c1']>0] =100
    df  #  原地修改
    
    c1 c2 c3 c4
    2000-02-02 100.000000 100.000000 100.000000 100.000000
    2000-02-03 100.000000 100.000000 100.000000 100.000000
    2000-02-04 100.000000 100.000000 100.000000 100.000000
    2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
    2000-02-06 -1.724282 -8.778584 0.422137 5.828152
    2000-02-07 -11.006192 11.447237 9.015907 5.024943
    df
    
    c1 c2 c3 c4
    2000-02-02 100.000000 100.000000 100.000000 100.000000
    2000-02-03 100.000000 100.000000 100.000000 100.000000
    2000-02-04 100.000000 100.000000 100.000000 100.000000
    2000-02-05 -3.224172 -3.840544 11.337694 -10.998913
    2000-02-06 -1.724282 -8.778584 0.422137 5.828152
    2000-02-07 -11.006192 11.447237 9.015907 5.024943

    读取CSV文件

    import pandas as pd
    from io import StringIO
    test_data = '''
    5.1,,1.4,0.2
    4.9,3.0,1.4,0.2
    4.7,3.2,,0.2
    7.0,3.2,4.7,1.4
    6.4,3.2,4.5,1.5
    6.9,3.1,4.9,
    ,,,
    '''
    
    # df = pd.read_csv('C:/Users/test_data.csv')
    test_data = StringIO(test_data)
    df = pd.read_csv(test_data)
    df = pd.read_excel(test_data)
    df.columns = ['c1', 'c2', 'c3', 'c4']
    df
    
    # 通过在isnull()方法后使用sum()方法即可获得该数据集某个特征含有多少个缺失值
    print(df.isnull().sum())
    
    df
    
    # axis = 0 删除有NaN值得行
    df dropa(axis=1)
    
    # 删除axis = 1 删除有NaN值的列
    df.dropa(axis = 1)
    
    # 删除全为NaN值的行或列
    df.dropa(how = all)
    
    

    导入导出数据

    df = pd.read_csv(filename)读取文件, 使用df.to_csv(filename)来保存文件

    合并数据

    df1 = pd.DataFrame(np.zeros(3,4))
    df1
    
    df2 = pd.DataFrame(np.ones(3,4))
    df2
    
  • 相关阅读:
    python之xlwt模块列宽width、行高Heights详解
    Testlink在CentOS、windows安装
    Appium中长按按钮操作
    CentOS oracle Client客户端安装
    WebDriver中自动识别验证码--Python实现
    shell批量重命令文件脚本
    MFC 显示图片
    MFC CEdit控件 自动换行
    第一次社会
    undefined reference 问题各种情况分析
  • 原文地址:https://www.cnblogs.com/Dr-wei/p/11051598.html
Copyright © 2020-2023  润新知