• 时间复杂度


    传送门①:关于计算时间复杂度和空间复杂度

    传送门②:关于时间复杂度的详解

    一、定义

    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

    1)时间频度 

    一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。
    但我们不可能也没有必要对每个算法都上机测试,只需知道算法花费的时间多少(魔镜魔镜告诉我,那个算法是跑得快的算法0.0)
    一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
    一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

    2)时间复杂度 

    n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 
    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))
    称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
    注意,时间频度与时间复杂度是不同的,时间频度不同但时间复杂度可能相同。
    如:T(n)=n^2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。

    二、常见的时间复杂度

    按数量级递增排列,常见的时间复杂度有:

    ● 常数阶 - O(1)
    ● 对数阶 - O(log2n)
    ● 线性阶 - O(n)
    ● 线性对数阶 - O(nlog2n)
    ● 平方阶 - O(n^2)
    ● 立方阶 - O(n^3)
    ● k次方阶 - O(n^k)
    ● 指数阶 - O(2^n)

    其中,

    ① O(n),O(n^2), 立方阶 O(n^3),......, k次方阶 O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度......
    ② O(2^n),指数阶时间复杂度,该种不实用
    ③ 对数阶 O(log2n),线性对数阶 O(nlog2n),除了常数阶以外,该种效率最高
  • 相关阅读:
    student
    super
    java 浮点数
    视图
    日期转换函数
    左外连接,右外连接,全外连接,自然连接,自连接区别
    Python中sys.argv[ ]的用法
    0 Scala
    统计字符串字符个数
    3个链表排序整合到一起
  • 原文地址:https://www.cnblogs.com/Dm920/p/12339710.html
Copyright © 2020-2023  润新知