• 用keras实现lstm 利用Keras下的LSTM进行情感分析


    1    I either LOVE Brokeback Mountain or think it’s great that homosexuality is becoming more acceptable!:
    1    Anyway, thats why I love ” Brokeback Mountain.
    1    Brokeback mountain was beautiful…
    0    da vinci code was a terrible movie.
    0    Then again, the Da Vinci code is super shitty movie, and it made like 700 million.
    0    The Da Vinci Code comes out tomorrow, which sucks.
    其中的每个句子都有个标签 1 或 0, 用来代表积极或消极。


        先把用到的包一次性全部导入
    "language-python hljs">from keras.layers.core import Activation, Dense
    from keras.layers.embeddings import Embedding
    from keras.layers.recurrent import LSTM
    from keras.models import Sequential
    from keras.preprocessing import sequence
    from sklearn.model_selection import train_test_split
    import nltk #用来分词
    import collections #用来统计词频
    import numpy as np

         在开始前,先对所用数据做个初步探索。特别地,我们需要知道数据中有多少个不同的单词,每句话由多少个单词组成。
    "language-pyhon hljs livecodeserver">maxlen = 0 #句子最大长度
    word_freqs = collections.Counter() #词频
    num_recs = 0 # 样本数
    with open('./train.txt','r+') as f:
    for line in f:
    label, sentence = line.strip().split(" ")
    words = nltk.word_tokenize(sentence.lower())
    if len(words) > maxlen:
    maxlen = len(words)
    for word in words:
    word_freqs[word] += 1
    num_recs += 1
    print('max_len ',maxlen)
    print('nb_words ', len(word_freqs))

         max_len 42
         nb_words 2324
          可见一共有 2324 个不同的单词,包括标点符号。每句话最多包含 42 个单词。
          根据不同单词的个数 (nb_words),我们可以把词汇表的大小设为一个定值,并且对于不在词汇表里的单词,把它们用伪单词 UNK 代替。 根据句子的最大长度 (max_lens),我们可以统一句子的长度,把短句用 0 填充。
          依前所述,我们把 VOCABULARY_SIZE 设为 2002。包含训练数据中按词频从大到小排序后的前 2000 个单词,外加一个伪单词 UNK 和填充单词 0。 最大句子长度 MAX_SENTENCE_LENGTH 设为40。
    MAX_FEATURES = 2000
    MAX_SENTENCE_LENGTH = 40

          接下来建立两个 lookup tables,分别是 word2index 和 index2word,用于单词和数字转换。
    "language-python hljs">vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
    word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
    word2index["PAD"] = 0
    word2index["UNK"] = 1
    index2word = {v:k for k, v in word2index.items()}

          下面就是根据 lookup table 把句子转换成数字序列了,并把长度统一到 MAX_SENTENCE_LENGTH, 不够的填 0 , 多出的截掉。
    "language-python hljs">X = np.empty(num_recs,dtype=list)
    y = np.zeros(num_recs)
    i=0
    with open('./train.txt','r+') as f:
    for line in f:
    label, sentence = line.strip().split(" ")
    words = nltk.word_tokenize(sentence.lower())
    seqs = []
    for word in words:
    if word in word2index:
    seqs.append(word2index[word])
    else:
    seqs.append(word2index["UNK"])
    X[i] = seqs
    y[i] = int(label)
    i += 1
    X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)

          最后是划分数据,80% 作为训练数据,20% 作为测试数据。
    "language-python hljs">Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)

          数据准备好后,就可以上模型了。这里损失函数用 binary_crossentropy, 优化方法用 adam。 至于 EMBEDDING_SIZE , HIDDEN_LAYER_SIZE , 以及训练时用到的BATCH_SIZE 和 NUM_EPOCHS 这些超参数,就凭经验多跑几次调优了。
    EMBEDDING_SIZE = 128
    HIDDEN_LAYER_SIZE = 64
    model = Sequential()
    model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH))
    model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
    model.add(Dense(1))
    model.add(Activation("sigmoid"))
    pile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])

          网络构建好后就是上数据训练了。用 10 个 epochs 和 batch_size 取 32 来训练这个网络。在每个 epoch, 我们用测试集当作验证集。
    BATCH_SIZE = 32
    NUM_EPOCHS = 10
    model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest))

          Train on 5668 samples, validate on 1418 samples
          Epoch 1/10
          5668/5668 [==============================] - 12s - loss: 0.2464 - acc: 0.8897 - val_loss: 0.0672 - val_acc: 0.9697
          Epoch 2/10
          5668/5668 [==============================] - 11s - loss: 0.0290 - acc: 0.9896 - val_loss: 0.0407 - val_acc: 0.9838
          Epoch 3/10
          5668/5668 [==============================] - 11s - loss: 0.0078 - acc: 0.9975 - val_loss: 0.0506 - val_acc: 0.9866
          Epoch 4/10
          5668/5668 [==============================] - 11s - loss: 0.0084 - acc: 0.9970 - val_loss: 0.0772 - val_acc: 0.9732
          Epoch 5/10
          5668/5668 [==============================] - 11s - loss: 0.0046 - acc: 0.9989 - val_loss: 0.0415 - val_acc: 0.9880
          Epoch 6/10
          5668/5668 [==============================] - 11s - loss: 0.0012 - acc: 0.9998 - val_loss: 0.0401 - val_acc: 0.9901
          Epoch 7/10
          5668/5668 [==============================] - 11s - loss: 0.0020 - acc: 0.9996 - val_loss: 0.0406 - val_acc: 0.9894
          Epoch 8/10
          5668/5668 [==============================] - 11s - loss: 7.7990e-04 - acc: 0.9998 - val_loss: 0.0444 - val_acc: 0.9887
          Epoch 9/10
          5668/5668 [==============================] - 11s - loss: 5.3168e-04 - acc: 0.9998 - val_loss: 0.0550 - val_acc: 0.9908
          Epoch 10/10
          5668/5668 [==============================] - 11s - loss: 7.8728e-04 - acc: 0.9996 - val_loss: 0.0523 - val_acc: 0.9901

          可以看到,经过了 10 个epoch 后,在验证集上的正确率已经达到了 99%。

          我们用已经训练好的 LSTM 去预测已经划分好的测试集的数据,查看其效果。选了 5 个句子的预测结果,并打印出了原句。
    "language-python hljs">score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
    print(" Test score: %.3f, accuracy: %.3f" % (score, acc))
    print('{} {} {}'.format('预测','真实','句子'))
    for i in range(5):
    idx = np.random.randint(len(Xtest))
    xtest = Xtest[idx].reshape(1,40)
    ylabel = ytest[idx]
    ypred = model.predict(xtest)[0][0]
    sent = " ".join([index2word[x] for x in xtest[0] if x != 0])
    print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent))

          Test score: 0.052, accuracy: 0.990
          预测 真实 句子
           0       0      oh , and brokeback mountain is a terrible movie …
           1       1      the last stand and mission impossible 3 both were awesome movies .
           1       1      i love harry potter .
           1       1      mission impossible 2 rocks ! ! … .
           1       1      harry potter is awesome i do n’t care if anyone says differently ! ..

          可见在测试集上的正确率已达 99%.

          我们可以自己输入一些话,让网络预测我们的情感态度。假如我们输入 I love reading. 和 You are so boring. 两句话,看看训练好的网络能否预测出正确的情感。
    "language-python hljs">INPUT_SENTENCES = ['I love reading.','You are so boring.']
    XX = np.empty(len(INPUT_SENTENCES),dtype=list)
    i=0
    for sentence in INPUT_SENTENCES:
    words = nltk.word_tokenize(sentence.lower())
    seq = []
    for word in words:
    if word in word2index:
    seq.append(word2index[word])
    else:
    seq.append(word2index['UNK'])
    XX[i] = seq
    i+=1
    XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH)
    labels = [int(round(x[0])) for x in model.predict(XX) ]
    label2word = {1:'积极', 0:'消极'}
    for i in range(len(INPUT_SENTENCES)):
    print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i]))

          积极    I love reading.
          消极    You are so boring.

      Yes ,预测正确。

         全部
    # -*- coding: gbk -*-
    from keras.layers.core import Activation, Dense
    from keras.layers.embeddings import Embedding
    from keras.layers.recurrent import LSTM
    from keras.models import Sequential
    from keras.preprocessing import sequence
    from sklearn.model_selection import train_test_split
    import collections
    import nltk
    import numpy as np
    ## EDA
    maxlen = 0
    word_freqs = collections.Counter()
    num_recs = 0
    with open('./train.txt','r+') as f:
    for line in f:
    label, sentence = line.strip().split(" ")
    words = nltk.word_tokenize(sentence.lower())
    if len(words) > maxlen:
    maxlen = len(words)
    for word in words:
    word_freqs[word] += 1
    num_recs += 1
    print('max_len ',maxlen)
    print('nb_words ', len(word_freqs))
    ## 准备数据
    MAX_FEATURES = 2000
    MAX_SENTENCE_LENGTH = 40
    vocab_size = min(MAX_FEATURES, len(word_freqs)) + 2
    word2index = {x[0]: i+2 for i, x in enumerate(word_freqs.most_common(MAX_FEATURES))}
    word2index["PAD"] = 0
    word2index["UNK"] = 1
    index2word = {v:k for k, v in word2index.items()}
    X = np.empty(num_recs,dtype=list)
    y = np.zeros(num_recs)
    i=0
    with open('./train.txt','r+') as f:
    for line in f:
    label, sentence = line.strip().split(" ")
    words = nltk.word_tokenize(sentence.lower())
    seqs = []
    for word in words:
    if word in word2index:
    seqs.append(word2index[word])
    else:
    seqs.append(word2index["UNK"])
    X[i] = seqs
    y[i] = int(label)
    i += 1
    X = sequence.pad_sequences(X, maxlen=MAX_SENTENCE_LENGTH)
    ## 数据划分
    Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_state=42)
    ## 网络构建
    EMBEDDING_SIZE = 128
    HIDDEN_LAYER_SIZE = 64
    BATCH_SIZE = 32
    NUM_EPOCHS = 10
    model = Sequential()
    model.add(Embedding(vocab_size, EMBEDDING_SIZE,input_length=MAX_SENTENCE_LENGTH))
    model.add(LSTM(HIDDEN_LAYER_SIZE, dropout=0.2, recurrent_dropout=0.2))
    model.add(Dense(1))
    model.add(Activation("sigmoid"))
    pile(loss="binary_crossentropy", optimizer="adam",metrics=["accuracy"])
    ## 网络训练
    model.fit(Xtrain, ytrain, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS,validation_data=(Xtest, ytest))
    ## 预测
    score, acc = model.evaluate(Xtest, ytest, batch_size=BATCH_SIZE)
    print(" Test score: %.3f, accuracy: %.3f" % (score, acc))
    print('{} {} {}'.format('预测','真实','句子'))
    for i in range(5):
    idx = np.random.randint(len(Xtest))
    xtest = Xtest[idx].reshape(1,40)
    ylabel = ytest[idx]
    ypred = model.predict(xtest)[0][0]
    sent = " ".join([index2word[x] for x in xtest[0] if x != 0])
    print(' {} {} {}'.format(int(round(ypred)), int(ylabel), sent))
    ##### 自己输入
    INPUT_SENTENCES = ['I love reading.','You are so boring.']
    XX = np.empty(len(INPUT_SENTENCES),dtype=list)
    i=0
    for sentence in INPUT_SENTENCES:
    words = nltk.word_tokenize(sentence.lower())
    seq = []
    for word in words:
    if word in word2index:
    seq.append(word2index[word])
    else:
    seq.append(word2index['UNK'])
    XX[i] = seq
    i+=1
    XX = sequence.pad_sequences(XX, maxlen=MAX_SENTENCE_LENGTH)
    labels = [int(round(x[0])) for x in model.predict(XX) ]
    label2word = {1:'积极', 0:'消极'}
    for i in range(len(INPUT_SENTENCES)):
    print('{} {}'.format(label2word[labels[i]], INPUT_SENTENCES[i]))

  • 相关阅读:
    sql分页查询
    SQL语句优化技术分析
    大型数据库的设计原则与开发技巧
    Microsoft SharePoint Server 2010 的新增功能
    Installing SharePoint 2010 on Windows 7
    Missing the ManageContent and structure in MOSS 2010
    Simple SharePoint 2010 + Silverlight + Client Object Model Example
    SharePoint 2010 Central AdminCreate/Extend Web Application button on Ribbon are disabled
    利用SharePoint Designer 修改列表页面实例
    数据库设计中的14个技巧
  • 原文地址:https://www.cnblogs.com/DjangoBlog/p/7270574.html
Copyright © 2020-2023  润新知