用数学公式来表示我们所需要证明的东西:(f_{n}=sumlimits_{i=0}^{lfloor frac{n+1}{2}
floor-1} C_{n-i-1}^{i})
前置知识:
[1.当m>n时C_{n}^{m} equiv 0
]
[2.C_{n}^{i}+C_{n}^{i-1}=C_{n+1}^{i}
]
第二个前置知识的证明:
[egin{aligned}
&frac{n!}{m! imes (n-m)!}+frac{n!}{(m-1)! imes (n-m+1)!}&\
=&frac{n!}{(m-1)! imes (n-m)!} imes (frac{1}{m} + frac{1}{n-m+1})&\
=&frac{(n+1)!}{m! imes (n-m+1)!}&\
=&C_{n+1}^{i}&
end{aligned}
]
证明如下:
设(n geq 3),则有:
[f_n=sum_{i=0}^{lfloor frac{n+1}{2}
floor - 1}C_{n-i-1}^{i}
]
[f_{n-1}=sum_{i=0}^{lfloor frac{n}{2}
floor - 1}C_{n-i-2}^{i}
]
[f_{n-2}=sum_{i=0}^{lfloor frac{n-1}{2}
floor - 1}C_{n-i-3}^{i}
]
我们将(f_{n-1})和(f_{n-2})相加:
[egin{aligned}
&f_{n-1}+f_{n-2}=sum_{i=0}^{n-2}C_{n-2-i}^{i}+sum_{i=0}^{n-3}C_{n-3-i}^{i}& \
=&C_{n-2}^{0}+C_{n-3}^{1}+C_{n-4}^{2}+……+C_{1}^{n-3}+C_{0}^{n-2}+C_{n-3}^{0}+C_{n-4}^{1}+……+C_{1}^{n-4}+C_{0}^{n-3}&\
=&C_{n-2}^{0}+(C_{n-3}^{1}+C_{n-3}^{0})+(C_{n-4}^{2}+C_{n-4}^{1})+……+(C_{1}^{n-3}+C_{1}^{n-4})+(C_{0}^{n-2}+C_{0}^{n-3})&\
=&C_{n-2}^{0}+sum_{i=1}^{n-2}C_{n-i-1}^{i}&\
=&C_{n-1}^{0}+sum_{i=1}^{n-2}C_{n-i-1}^{i}+C_{0}^{n-1}&\
=&sum_{i=0}^{n-1}C_{n-1-i}^{i}=f_n&
end{aligned}
]
因此我们可以得知(f_{n}=sumlimits_{i=0}^{lfloor frac{n+1}{2} floor-1} C_{n-i-1}^{i})为斐波那契数列的第n项,且f(1)=f(2)=1。