• 杨辉三角形从左下角加到右上角等于斐波那契数的证明


    用数学公式来表示我们所需要证明的东西:(f_{n}=sumlimits_{i=0}^{lfloor frac{n+1}{2} floor-1} C_{n-i-1}^{i})
    前置知识:

    [1.当m>n时C_{n}^{m} equiv 0 ]

    [2.C_{n}^{i}+C_{n}^{i-1}=C_{n+1}^{i} ]

    第二个前置知识的证明:

    [egin{aligned} &frac{n!}{m! imes (n-m)!}+frac{n!}{(m-1)! imes (n-m+1)!}&\ =&frac{n!}{(m-1)! imes (n-m)!} imes (frac{1}{m} + frac{1}{n-m+1})&\ =&frac{(n+1)!}{m! imes (n-m+1)!}&\ =&C_{n+1}^{i}& end{aligned} ]

    证明如下:

    (n geq 3),则有:

    [f_n=sum_{i=0}^{lfloor frac{n+1}{2} floor - 1}C_{n-i-1}^{i} ]

    [f_{n-1}=sum_{i=0}^{lfloor frac{n}{2} floor - 1}C_{n-i-2}^{i} ]

    [f_{n-2}=sum_{i=0}^{lfloor frac{n-1}{2} floor - 1}C_{n-i-3}^{i} ]

    我们将(f_{n-1})(f_{n-2})相加:

    [egin{aligned} &f_{n-1}+f_{n-2}=sum_{i=0}^{n-2}C_{n-2-i}^{i}+sum_{i=0}^{n-3}C_{n-3-i}^{i}& \ =&C_{n-2}^{0}+C_{n-3}^{1}+C_{n-4}^{2}+……+C_{1}^{n-3}+C_{0}^{n-2}+C_{n-3}^{0}+C_{n-4}^{1}+……+C_{1}^{n-4}+C_{0}^{n-3}&\ =&C_{n-2}^{0}+(C_{n-3}^{1}+C_{n-3}^{0})+(C_{n-4}^{2}+C_{n-4}^{1})+……+(C_{1}^{n-3}+C_{1}^{n-4})+(C_{0}^{n-2}+C_{0}^{n-3})&\ =&C_{n-2}^{0}+sum_{i=1}^{n-2}C_{n-i-1}^{i}&\ =&C_{n-1}^{0}+sum_{i=1}^{n-2}C_{n-i-1}^{i}+C_{0}^{n-1}&\ =&sum_{i=0}^{n-1}C_{n-1-i}^{i}=f_n& end{aligned} ]

    因此我们可以得知(f_{n}=sumlimits_{i=0}^{lfloor frac{n+1}{2} floor-1} C_{n-i-1}^{i})为斐波那契数列的第n项,且f(1)=f(2)=1。

  • 相关阅读:
    N-Queens II
    N-Queens
    Insertion Sort List
    Combination Sum
    Next Permutation
    Permutations II
    Unique Paths II
    【转】Python之mmap内存映射模块(大文本处理)说明
    【转】python之模块array
    【转】python 退出程序的方式
  • 原文地址:https://www.cnblogs.com/Dillonh/p/11162494.html
Copyright © 2020-2023  润新知