题目描述
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
输入
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
输出
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
样例输入
5
9
1
0
5
4
3
1
2
3
0
样例输出
6 0
就是让你从小到大排序,每次只能交换相邻元素,求最小次数
#include <bits/stdc++.h> #define ll long long #define INF 0x3f3f3f3f using namespace std; const int M=500005; int L[M/2+2],R[M/2+2]; int t[M]; ll ans; int n; void mergearr(int A[],int left,int mid,int right) { int i=left,j=mid+1; int k=left; while(i<=mid&&j<=right) { if(A[i]<=A[j]) t[k++]=A[i++]; else{ t[k++]=A[j++]; ans+=mid-i+1; } } while(i<=mid) t[k++]=A[i++]; while(j<=right) t[k++]=A[j++]; for(int i=left;i<=right;i++) A[i]=t[i]; } void mergeSort(int A[],int left,int right) { if(left<right) { int mid=(left+right)/2; mergeSort(A,left,mid); mergeSort(A,mid+1,right); mergearr(A,left,mid,right); } } int main() { int A[M]; int n,i; while(scanf("%d",&n)&&n!=0) { ans=0; for(int i=1;i<=n;i++) { scanf("%d",&A[i]); } mergeSort(A,1,n); printf("%lld ",ans); } return 0; }