• 关于TensorFlow你需要了解的9件事


    关于TensorFlow你需要了解的9件事

    https://mp.weixin.qq.com/s/cEQAdLnueMEj0OQZtYvcuw

    摘要:本文对近期在旧金山举办的谷歌 Cloud Next大会上有关TensorFlow的一些特点进行了总结。

    1、它是一个强大的机器学习框架

    TensorFlow是一个基于数据流图的机器学习框架,它是Google Brain的第二代机器学习系统,常被应用于各种感知、语言理解、语音识别、图像识别等多项机器深度学习领域。Tensor(张量)代表了N维数组,Flow(流)代表了基于数据流图的计算。

    如果你有足够多的数据,而且正处在人工智能的深度学习、神经网络、高级人工智能的阶段,那么它可能就会成为你最好的帮手了。TensorFlow不是一个工具,而是一个框架,假如你想通过20×2的电子表格返回一条回归线,那么现在你可以停止学习开始使用了。

    当你想要得到的成就比较高端宏大,那么你就一定会兴奋了,TensorFlow已经被应用在太空领域来寻找新的行星,可以通过帮助医生筛查糖尿病视网膜病变来预防失明,而且还可以通过警告非法砍伐森林的活动来帮助拯救森林。AlphaGo和Google Cloud Vision建在了TensorFlow上面,这是你需要关注的。另外,TensorFlow是开源的,大家可以免费下载并随时使用。

    在TensorFlow的帮助下发现的系外恒星Kepler-90i,使得KePLer-90星系成为我们已知唯一的太阳系外的,并且有八颗行星围绕着它不停运行的星系。还没有任何其它的星系有超过八颗行星。 

    • TensorFlow 下载地址:

    https://www.tensorflow.org/install/

    • TensorFlow 初始教程:

    https://www.datacamp.com/community/tutorials/tensorflow-tutorial

    2、方法是可选的

    如果你之前曾经尝试使用过TensorFlow,然后就被吓得没再用了。因为它逼的你像一个学术研究者一样,而不是像一个开发者那样,不过目前,有了更多的选择,所以就赶紧回来继续用吧。

    TensorFlow eager execution可以让你像一个Python程序员那样与系统进行交互:所有的即时编码和调试都是按行执行的,而不是像其它语言那样编写大段的程序代码块令人畏惧。我是一个学术研究的人,但我从一开始就喜欢上了TensorFlow eager execution,因此就尽快开始用吧。

      

                           

    3、支持逐行构造神经网络

    Keras + TensorFlow = 便捷构建神经网络

    Keras是一个基于TensorFlow的深度学习库,它由纯Python编写而成,其特点是对用户友好的,并且能够提供简易和快速的原型设计,这对一些低版本的TensorFlow会有更多的帮助。如果你喜欢面向对象的思维方法,并且更愿意一次构建一层神经网络,那么你就会彻底喜欢上TensorFlow.keras。在下面几行的代码中,我们创建了一个连贯的神经网络,并带有好似走了音的标准铃声和口哨声。

     

     

     4、不仅仅是Python

    可能你现在一直在抱怨TensorFlow对Python的偏执。现在好了,TensorFlow不再仅仅针对Python的开发人员了。它现在支持运行在多种语言环境中,从R到Swift再到JavaScript,所支持的语言请见下图:

     

     

     5、可以在浏览器中做任何事情

    提到JavaScript,你可以用TensorFlow.js在浏览器中训练和执行模型。

     

     

    利用TensorFlow.js在浏览器中进行实时人体姿态评估。打开你的相机,并请看这个示例。

     6、给微型设备一个简单的版本

    TensorFlow Lite 可以让模型在各种设备中执行,个人电脑或者服务器的单个或多个CPU或GPU上,甚至是移动设备和物联网(IoT)上。TensorFlow会给你带来超过原来3倍的性能,它对线程、队列和异步计算具有很好的支持,最大程度的利用现有可用的硬件,可以自由的将TensorFlow数据流图中计算元素分配到不同的设备上,让TensorFlow来处理副本。现在你就可以在Raspberry Pi电脑或手机上开始机器学习了。在大会上的演讲中,劳伦斯做了一件勇敢的事情,在成千上万的人面前,通过在一个Android仿真模拟器上进行了图像分类,的确效果不错。

     

     7、专业设备更好一些

    如果你厌倦了一直等待CPU完成用提供的数据来训练神经网络的工作,那么你现在就可以用Cloud TPUs给这项工作专门设计的硬件了。就在几周前,谷歌在Alpha平台上发布了第3代的TPU(张量处理单元),它是一个专门为机器学习和TensorFlow定制的ASIC(集成电路芯片技术)。TPU是一个可编程的人工智能加速器,提供高吞吐量的低精度计算(如8位),面向使用或运行模型而不是训练模型。

     

     

     8、新的数据管道提高显著

    你现在在数据管道方面还在用numpy吗?假如你想用TensorFlow的话,目前tf.data namespace可以使你在TensorFlow的输入处理上更具表现力。tf.data可以为您提供快速、灵活、易于使用的数据管道,同时还提供同步的训练。

     

     9、你不需要从头开始

    都知道从头开始机器学习不是什么有趣的方式。打开编辑器,里面只有一个空白的新页面,也没有实例代码。这时候,你可以使用TensorFlow Hub,就可以继续一个比较古老的习惯,就是用别人的代码来帮助自己编写代码,并称之为是你自己的代码。

     

     

    文章原标题《9 Things You Should Know About TensorFlow》

  • 相关阅读:
    宝宝多大可以用枕头?别被忽悠,不到年龄用枕头伤颈椎又容易窒息
    如何提高英文阅读水平?
    古典音乐进阶之路
    循环、行列转换、跨表更新的综合案列
    GROUPING 运算符
    事务
    聚合函数
    Airtest自动化测试
    mac更新nodejs
    更新package.json里所有模块
  • 原文地址:https://www.cnblogs.com/DicksonJYL/p/9577984.html
Copyright © 2020-2023  润新知