• Naive Bayes总结


    为了更好地而阅读体验,欢迎来我的GitHub小站原址观看!

    This notebook is inspired but not limited by Machine Learning In Action.
    e.g., the implementation of the algrithm is at a higher level.

    All rights deserved by Diane(Qingyun Hu).

    1. About Naive Bayes

    1.1 Mechanism of Naive Bayes

    Naive Bayes is a variant of Bayes' Rule. Let's recap Bayes' Rule a bit.

    [P(c_i | w_1, w_2, w_3, ..., w_m) = frac{P(w_1, w_2, w_3, ..., w_m | c_i)*P(c_i)}{P(w_1, w_2, w_3, ..., w_m)} ]

    where (w_1, w_2, w_3, ..., w_m) is an vector of words that present in the document as well as included in the existing vocabulary list, and (c_i) stands for class i.

    Naive Bayes asks us to assume that the presence of (w_1, w_2, w_3, ..., w_m) is independent. Although this is not realistic, as in there are always some connection between one word to another. However, this assumption simplifies the calculation and works quite well so far. By assuming the presence of words is independent, here we have:

    [P(c_i | w_1, w_2, w_3, ..., w_m) = frac{( P(w_1 | c_i) * P(w_2 | c_i) * P(w_3 | c_i) * ... * P(w_m | c_i) ) * P(c_i)}{P(w_1) * P(w_2) * P(w_3) * ... * P(w_m))} ]

    1.2 Pros and Cons

    1.21 Pros

    1. Handles multiple classes.
    2. Works well on small dataset.

    1.22 Cons

    1. Sensitive to how the input data is prepared
    2. The sparse bag-of-words vector could consume a lot of memery if not handling it properly, as in for each vector, it's lenth is at the same lenth of vocabulary list.

    1.23 Works with

    Nominal Values

    2. ID3 Tree Construction

    # Creat demo dataset
    from IPython.core.interactiveshell import InteractiveShell
    InteractiveShell.ast_node_interactivity = "all"
    import pandas as pd
    import math
    def createDataSet():
        postingList=[['my', 'dog', 'has', 'flea', 
                      'problems', 'help', 'please'],
                     ['maybe', 'not', 'take', 'him', 
                      'to', 'dog', 'park', 'stupid'],
                     ['my', 'dalmation', 'is', 'so', 'cute', 
                       'I', 'love', 'him'],
                     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                     ['mr', 'licks', 'ate', 'my', 'steak', 'how',
                       'to', 'stop', 'him'],
                     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
        classVec = [0,1,0,1,0,1]
        return postingList,classVec
    dataSet, labels = createDataSet()
    dataSet
    labels
    
    [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    
    
    
    
    
    
    [0, 1, 0, 1, 0, 1]
    
    # Tool Function 1: Create an vocabulary list according to dataSet
    
    def createVocabList(dataSet):
        vocabList = set([])
        for docum in dataSet:
            vocabList = vocabList | set(docum)
        return list(vocabList)
    vocabList = createVocabList(dataSet)
    
    # Tool Function 2: Get an bag of words vector for each document
    import numpy as np
    def bagOfWordsVec(vocabList, document):
        returnVec = np.ones(len(vocabList))
        for token in document:
            if token in vocabList:
                returnVec[vocabList.index(token)] += 1
        return returnVec
    bagOfWordsVec(vocabList, dataSet[3])
    
    array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  2.,
            1.,  1.,  2.,  1.,  1.,  1.,  2.,  1.,  1.,  1.,  1.,  1.,  1.,
            1.,  2.,  1.,  1.,  2.,  1.])
    
    # Tool Function 3: Get BagOfWordsTable for Training Dataset
    
    def getBagOfWordsTable(dataSet, vocabList, label):
        bagOfWordsTable = []
        for document in dataSet:
            bagOfWordsTable.append(bagOfWordsVec(vocabList, document))
        bagOfWordsTable = pd.DataFrame(bagOfWordsTable, columns=vocabList)
        bagOfWordsTable['label']= label
        return bagOfWordsTable
    getBagOfWordsTable(dataSet, vocabList, labels)
    
    park food licks him problems love take not maybe mr ... has so I help stupid dalmation ate worthless my label
    0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 ... 2.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 0
    1 2.0 1.0 1.0 2.0 1.0 1.0 2.0 2.0 2.0 1.0 ... 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1
    2 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 ... 1.0 2.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 0
    3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1
    4 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 ... 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 2.0 0
    5 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0 1

    6 rows × 33 columns

    # Calculate Probabilities
    
    bagOfWordsTable = getBagOfWordsTable(dataSet, vocabList, labels)
    def getProb(c_i, bagOfWordsTable, testDataset):
        P_ci = bagOfWordsTable['label'][bagOfWordsTable.label==c_i].count() / bagOfWordsTable.shape[0]
        bagOfWordsTable_ci = bagOfWordsTable[bagOfWordsTable.label==c_i]
        P_Xi_ci = bagOfWordsTable_ci.sum() / bagOfWordsTable_ci.sum().sum()
        P_Xi = bagOfWordsTable.sum() / bagOfWordsTable.sum().sum()
        
        predVec = []
        for document in testDataset:
            predVec.append(np.exp(np.log(P_Xi_ci[document]).sum() + np.log(P_ci) - np.log(P_Xi[document]).sum()))
    #     return P_Xi_ci, P_ci, P_Xi
        return predVec
    
    print("Predictions on Traing DataSet (The propability of each document being Class 1) :")
    getProb(1, bagOfWordsTable,dataSet)
    
    print("Real Classes of Traing DataSet")
    labels
    
    print("Not Bad!")
    
    Predictions on Traing DataSet (The propability of each document being Class 1) :
    
    
    
    
    
    [0.18178454867713456,
     1.2017140246697071,
     0.12570863705130642,
     1.1353438671320581,
     0.14790295856460187,
     1.4539243496229779]
    
    
    
    Real Classes of Traing DataSet
    
    
    
    
    
    [0, 1, 0, 1, 0, 1]
    
    
    
    Not Bad!
    

    3. Misc.

    Trick 1: Initiate bag-of-words vector with 1s instead of 0s to prevent something like (P(w_i|c_1)==0) from happening, which would cause the prediction to be 0.

    Trick 2: Probability varies from 0 to 1, thus when multiplying a bunch of probabilities like (P(w_1) * P(w_2) * P(w_3) * ... * P(w_m)), underflow tend to happen. To prevent this from happening, what we can do is to apply log() first then exp() to the right side of the equation $P(c_i | w_1, w_2, w_3, ..., w_m) = frac{( P(w_1 | c_i) * P(w_2 | c_i) * P(w_3 | c_i) * ... * P(w_m | c_i) ) * P(c_i)}{P(w_1) * P(w_2) * P(w_3) * ... * P(w_m))} $ .

  • 相关阅读:
    css 正方体
    鼠标放上去,不同的cursor光标类型
    文件上传用到的函数 20150205
    PHP常用正则表达式汇总
    代码练习之 登陆 PHP会话控制 session cookie
    正则表达式全部符号解释
    字典转模型
    Day11 TableView
    Day10
    Day9
  • 原文地址:https://www.cnblogs.com/DianeSoHungry/p/11357240.html
Copyright © 2020-2023  润新知