• pat1044. Shopping in Mars (25)


    1044. Shopping in Mars (25)

    时间限制
    100 ms
    内存限制
    65536 kB
    代码长度限制
    16000 B
    判题程序
    Standard
    作者
    CHEN, Yue

    Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

    1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
    2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
    3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

    Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

    If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 numbers: N (<=105), the total number of diamonds on the chain, and M (<=108), the amount that the customer has to pay. Then the next line contains N positive numbers D1 ... DN (Di<=103 for all i=1, ..., N) which are the values of the diamonds. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print "i-j" in a line for each pair of i <= j such that Di + ... + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

    If there is no solution, output "i-j" for pairs of i <= j such that Di + ... + Dj > M with (Di + ... + Dj - M) minimized. Again all the solutions must be printed in increasing order of i.

    It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

    Sample Input 1:
    16 15
    3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
    
    Sample Output 1:
    1-5
    4-6
    7-8
    11-11
    
    Sample Input 2:
    5 13
    2 4 5 7 9
    
    Sample Output 2:
    2-4
    4-5
    

    提交代码

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<queue>
     6 #include<vector>
     7 #include<cmath>
     8 #include<string>
     9 #include<map>
    10 #include<set>
    11 using namespace std;
    12 vector<pair<int,int> > line;
    13 #define inf 100000005
    14 int main(){
    15     //freopen("D:\INPUT.txt","r",stdin);
    16     int minsum;//历史上的最小值
    17     int n,sum,i,j;
    18     scanf("%d %d",&n,&sum);//规定的最小值
    19     int *dia=new int[n+5];
    20     for(i=1;i<=n;i++){
    21         scanf("%d",&dia[i]);
    22     }
    23     dia[0]=dia[1];
    24     j=1;//虚拟0位置还有数
    25     int cursum=dia[1]+dia[0];//当前的最小值
    26     minsum=inf;
    27     line.push_back(make_pair(0,0));
    28     for(i=1;i<=n;i++){//指针思想
    29         cursum-=dia[i-1];
    30         while(j<n&&cursum<sum){
    31             cursum+=dia[++j];
    32         }
    33         if(cursum>=sum&&cursum<minsum){//update
    34             //这里的cursum>=sum是针对j已经到数组末尾设立的
    35             //j之前如果已经到末尾,i向后移动有可能cursum有可能等于sum,但一定是减少的
    36             line.clear();
    37             line.push_back(make_pair(i,j));
    38             minsum=cursum;
    39         }
    40         else{
    41             if(cursum==minsum){//insert
    42                 line.push_back(make_pair(i,j));
    43             }
    44         }
    45     }
    46     for(i=0;i<line.size();i++){
    47         printf("%d-%d
    ",line[i].first,line[i].second);
    48     }
    49     return 0;
    50 }
  • 相关阅读:
    函数式编程
    scala 有 + 运算符吗?
    使用 Idea 打 scala程序的 jar 包
    相见恨晚的 scala
    半夜思考,为什么 String 具有不变性
    我的常用
    DataTable学习笔记
    Js 操作cookie
    嵌套的 ajax 请求
    Jquery插件收集【m了慢慢学】
  • 原文地址:https://www.cnblogs.com/Deribs4/p/4770598.html
Copyright © 2020-2023  润新知