Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3155 | Accepted: 1817 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
1 #include<iostream> 2 using namespace std; 3 int euler(int a){ 4 int i=2; 5 int ans=a; 6 if(a%2==0){ 7 //cout<<2<<endl; 8 ans=ans/i*(i-1); 9 while(a%2==0){ 10 a/=2; 11 } 12 } 13 for(i=3;i<=a;i+=2){//优化 14 if(a%i==0){ 15 //cout<<i<<endl; 16 ans=ans/i*(i-1); 17 while(a%i==0){ 18 a/=i; 19 } 20 } 21 } 22 return ans; 23 } 24 int main()//23, 28, and 33 25 { 26 int p; 27 while(cin>>p){ 28 cout<<euler(p-1)<<endl; 29 } 30 return 0; 31 }