• hdu1028


                    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9963    Accepted Submission(s): 7052


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4
    10
    20
     
    Sample Output
    5
    42
    627
    #include<iostream>
    using namespace std;
    int main()
    {
        int n,i,j,k,c1[10000],c2[10000];
        while(scanf("%d",&n)!=EOF && n)
        {
            for(i=0;i<=n;i++)
            {
                c1[i] = 1;
                c2[i] = 0;
            }
            for(i=2;i<=n;i++)
            {
                for(j=0;j<=n;j++)
                {
                    for(k=0;k+j<=n;k+=i)
                    {
                        c2[j+k] += c1[j];
                    }
                    
                }
                for(j=0;j<=n;j++)
                {
                    c1[j] = c2[j];
                    c2[j] = 0;
                }
            }
            printf("%d
    ",c1[n]);
        }
        return 0;
    }
  • 相关阅读:
    Map1: iOS开发中定位和地图介绍
    GCD11: 创建计时器
    GCD10: 用GCD构建自己的分派队列
    GCD9: 用GCD将任务分组
    GCD8: 在GCD上让一个任务最多执行一次
    GCD7: 利用GCD延时后执行任务
    GCD6: 在GCD上异步执行非UI相关任务
    GCD5: 用GCD同步执行非UI相关的任务
    回文数
    字符串置换
  • 原文地址:https://www.cnblogs.com/Deng1185246160/p/3242494.html
Copyright © 2020-2023  润新知