• Operator与优化


    Relation

    关系这个词跟映射有点相似,对于一个关系(R),其是((x, y))的一个集合集合。其中( ext{dom }R={x|(x,y)in R})(R(x)={yvert (x,y)in R}),其零集合是({x| (x,y)in R, y=0})

    Operations on Relation

    • inverse. (R^{-1}={(y, x)vert (x,y)in R})
    • composition. (RS={(x, y)vert (x,z)in R, (z,y)in S})
    • scalar multiplication. (alpha R={(x, alpha y)vert (x,y)in R})
    • addition. (R+S={(x, y+z)vert (x,y)in R, (x,z)in S})
    • resolvent operator. (S=(I+lambda R)^{-1})

    通过以上的运算可以看出,relation有点类似于凸函数中epigraph的那种集合定义。

    Monotone Operations

    对于一个单调的relation (F),其定义为

    [(u-v)^T(x-y)geq 0 ]

    对于任意的((x, y), (u,v)in R). 一个最大单调(F)的定义为,没有其他单调relation包含(F)

    (F)是最大单调当且仅当(F)是一个连接的曲线,其斜率不存在负值。

    Case: Subgradient (F=partial f(x))

    Nonexpansive and contractive operator

    对于一个(L-)Lipschitz连续的operator (F),其nonexpansive和contraction的定义分别为(L=1)(L<1)

    Characters:

    Resolvent operation and Cayley operator

    对于一个relation (F),当(F)是单调且nonexpansive时,(R) operator是contractive的。(F)的cayley operator定义为

    [C=2R-I=2(I+lambda F)^{-1}-I ]

    同样当F是单调的时候,其cayley operator (C)是nonexpansive。

    Proof:

    Case:

    1. Proximal
    1. Indicator

    Fixed point of operators & zero set of (F)

    这里有个很重要的定理就是Cayleyresolvent的Fixed point等价于(F) relation的zero set。也就是

    [F(x)in 0 Leftrightarrow C(x)=x Leftrightarrow R(x)=x ]

    Theorem: Banach fixed point theorem

    (F)是contraction,dom (F=R^n),那么(F(x))会收敛到一个唯一的fixed point。

    Damped iteration of a nonexpansive operator

    相对于

    [x^{k+1}=F(x^k) ]

    Damped iteration为一个(x^k)(F(x^k))的组合

    [x^{k+1} = heta^k x^k+(1- heta^k)F(x^k) ]

    Proof:

    Case:

    Operator Splitting

    这里要解决的问题是一个relation (F=A+B),单独队(F)进行求解可能比较麻烦而分开对(A)(B)求解更简单。

    Theorem: 如果A和B是maximal monotone,那么

    [0in A(x)+B(x) Leftrightarrow C_AC_B(z)=z ]

    其中(x=R_B(z))

    Proof:

    证明也是比较简单,使用定义就可以得到。

    Peaceman-Rachford & Douglas-Rachfold Splitting

    [egin{align} & ext{Peaceman-Rachford}:qquad z^{k+1}=C_AC_B(z^k)\ & ext{Douglas-Rachfold}:qquad z^{k+1}=frac 1 2(I+C_AC_B)(z^k)\ end{align} ]

    1. Douglas-Rachfold updating

    The last equation:

    Case: Alternating direction method of multipliers

    Case: Constrained optimization

    1. Peaceman-Rachford updating

    [egin{align}x^{k+frac{1}{2}}&= ext{prox}_{alpha f}(z^k)\z^{k+frac{1}{2}}&=2x^{k+frac{1}{2}}-z^k\x^{k+1}&= ext{prox}_{alpha g}(z^{k+frac{1}{2}})\z^{k+1}&=2x^{k+1}-z^{k+frac{1}{2}}end{align} ]

    Case: FedSplit, a consensus problem

    对于loss函数(F),以及consensus constrain,利用一阶方法求解最小值等价于

    [0in abla F(x)+mathcal{N}^{ot} ]

    其中(mathcal{N}^{ot})为其consensus的normal corn。

    上图为其论文中的算法流程,这里的(A) operator为(mathcal{N}^{ot})(B) operator为( abla F)而且由于(x=ar{z})在最后执行所以整个顺序都提前,并且算法中的第一步(a)直接整合了PR的中间两步。

    Consensus Optimization

    贴一下Boyd课程的代码吧(注释掉的是我修改的,更新就和公式一样了)
    % Solves the QP
    %       mininimze   (1/2)||Ax - b||_2^2
    %       subject to  Fx <= g
    % using D-R consensus. Note that the code has not been optimized for
    % runtime and is only presened to give an idea of D-R consensu. For better
    % performance, the inner loop should be run in parallel and should use a
    % fast QP solver for small problems (e.g., CVXGEN).
    %
    % EE364b Convex Optimization II, S. Boyd
    % Written by Eric Chu, 04/25/11
    % 
    
    close all; clear all
    randn('state', 0); rand('state', 0);
    
    %%% Generate problem instance
    m = 1000;
    n = 100;
    k = 50;
    
    xtrue = randn(n,1);
    A = randn(m,n);
    b = A*xtrue + randn(m,1);
    
    F = randn(k,n);
    g = F*xtrue;
    
    %%% Use CVX to find solution
    cvx_begin
        variable x(n)
        minimize ((1/2)*sum_square(A*x - b))
        subject to
            F*x <= g
    cvx_end
    xcvx = x;
    fstar = cvx_optval; 
      
    %%% Douglas-Rachford consensus splitting
    N           = 10;      % number of subproblems
    MAX_ITERS   = 50;
    rho         = 200;
    
    z           = zeros(n,N); 
    xbar        = zeros(n,1);
    
    for j = 1:MAX_ITERS,
        
        % x = prox_f(z), could be done in parallel
        for i = 1:N,
            Ai = A(m/N*(i-1) + 1:i*m/N,:);
            bi = b(m/N*(i-1) + 1:i*m/N);
            
            Fi = F(k/N*(i-1) + 1:i*k/N,:);
            gi = g(k/N*(i-1) + 1:i*k/N);
            
            % use CVX to solve prox operator
            zi = z(:,i);
            cvx_solver sdpt3
            cvx_begin quiet
                variable xi(n)
                minimize ( (1/2)*sum_square(Ai*xi - bi) + (rho/2)*sum_square(xi - zi) )
                subject to
                    Fi*xi <= gi
            cvx_end
            x(:,i) = xi;
        end
        
        %% standard 
        %z_midterm = 2*x-z;
        %xbar_prev = xbar;
        %xbar = mean(z_midterm,2);
        
        %infeas(j) = sum(pos(F*xbar - g));
        %f(j) = (1/2)*sum_square(A*xbar - b);
        %z = z + (xbar*ones(1,N) - x);
        
        %% Boyd
        
        xbar_prev = xbar;
        xbar = mean(x,2);
        
        % record infeasibilities
        infeas(j) = sum(pos(F*xbar - g));
        
        % record objective value
        f(j) = (1/2)*sum_square(A*xbar - b);
        
        % update
        z = z + (xbar*ones(1,N) - x) + (xbar - xbar_prev)*ones(1,N);
    end
    
    %%% Make plots
    subplot(2,1,1)
    semilogy(1:MAX_ITERS, infeas);
    ylabel('infeas'); set(gca, 'FontSize', 18); axis([1 MAX_ITERS 10^-2 10^2])
    subplot(2,1,2)
    plot(1:MAX_ITERS, f, [1 MAX_ITERS], [fstar fstar], 'k--');
    xlabel('k'); ylabel('f'); axis([1 MAX_ITERS 300 2000]); set(gca, 'FontSize', 18);
    print -depsc dr_consensus_qp.eps
    
    

    左边是我修改的,右边是Boyd的代码。看下来效果好像差不多,但是我还没搞懂他的代码为啥这样写。

    参考资料

  • 相关阅读:
    Dllimport函数時无法在Dll中找到的入口点
    cb35a_c++_STL_算法_for_each
    cb34a_c++_STL_算法_查找算法_(7)_lower_bound
    cb33a_c++_STL_算法_查找算法_(6)binary_search_includes
    cb32a_c++_STL_算法_查找算法_(5)adjacent_find
    cb31a_c++_STL_算法_查找算法_(4)find_first_of
    cb30a_c++_STL_算法_查找算法_(3)search_find_end
    cb29a_c++_STL_算法_查找算法_(2)search_n
    cb28a_c++_STL_算法_查找算法_(1)find_find_if
    cb27a_c++_STL_算法_最小值和最大值
  • 原文地址:https://www.cnblogs.com/DemonHunter/p/15522570.html
Copyright © 2020-2023  润新知