Given an array of n integers where n > 1, nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given [1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
思路:不能用除法,只能用乘法。对于每个位置,最后的结果是他左边的所有数的积乘上右边所有数的积,
比如,对于 3 这个数, 他这个位置上最后的结果为 8 。8 是左边 [ 1, 2 ] 和 右边 [ 3 ] 的乘积。那么我们可
以先反向遍历数组,得到每个位置上相对应的右边的乘积。先初始化一个结果数组[ 1, 1, 1, 1 ]。执行一次
的结果为 [ 24, 12, 4, 1],再正向遍历一次,得到最后的结果为 [24,12,8,6]
.
class Solution { public int[] productExceptSelf(int[] nums) { int n = nums.length; int[] res = new int[n]; for (int i = 0; i < n; i++) res[i] = 1; int product = 1; for (int i = 0; i < n; i++){ res[i] *= product; product *= nums[i]; } product = 1; for (int i = n-1; i>=0; i--){ res[i] *= product; product *= nums[i]; } return res; } }