题目大意
给出一个长度为 (n) 的数组,选出一些数异或之和为 (s1),其余数异或之和为 (s2),求 (s1+s2) 最大时 (s1) 的最小值。
思路
你发现如果你设 (s) 为所有数的异或和,那么如果 (s) 某一位为 (0) 就可以拆成(1oplus 1),不同就只能拆成 (0oplus 1),所以我们应该多拆 (0) ,这个用线性基实现即可。
( exttt{Code})
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define ll long long
#define MAXN 100005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,tot,b[63];
ll s,s2,a[MAXN],p[63];
void ins (ll x){
for (Int i = 1;i <= tot;++ i)
if (x & (1ll << b[i])){
if (!p[i]){p[i] = x;break;}
else x ^= p[i];
}
}
signed main(){
read (n);
for (Int i = 1;i <= n;++ i) read (a[i]),s ^= a[i];
for (Int i = 62;~i;-- i) if (!(s >> i & 1)) b[++ tot] = i;
for (Int i = 62;~i;-- i) if (s >> i & 1) b[++ tot] = i;
for (Int i = 1;i <= n;++ i) ins (a[i]);
for (Int i = 1;i <= tot;++ i) if (!(s2 & (1ll << b[i]))) s2 ^= p[i];
write (s ^ s2),putchar ('
');
return 0;
}