• 最长公共子序列问题(转)


    转自http://blog.csdn.net/yysdsyl/article/details/4226630

    动态规划法

    经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

    为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

    【问题】 求两字符序列的最长公共字符子序列

    问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1,序列Y=“y0,y1,…,yk-1X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

    考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1B=“b0,b1,…,bm-1,并Z=“z0,z1,…,zk-1为它们的最长公共子序列。不难证明有以下性质:

    (1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2是“a0,a1,…,am-2和“b0,b1,…,bn-2的一个最长公共子序列;

    (2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1是“a0,a1,…,am-2和“b0,b1,…,bn-1的一个最长公共子序列;

    (3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1是“a0,a1,…,am-1和“b0,b1,…,bn-2的一个最长公共子序列。

    这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2和“b0,b1,…,bm-2的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2和“b0,b1,…,bn-1的一个最长公共子序列和找出“a0,a1,…,am-1和“b0,b1,…,bn-2的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

    求解:

    引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
    我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。


    问题的递归式写成:

    回溯输出最长公共子序列过程:

    算法分析:
    由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。

     1 #include <stdio.h>
    2 #include <string.h>
    3 #define MAXLEN 100
    4
    5 void LCSLength(char *x, char *y, int m, int n, int c[][MAXLEN], int b[][MAXLEN])
    6 {
    7 int i, j;
    8
    9 for(i = 0; i <= m; i++)
    10 c[i][0] = 0;
    11 for(j = 1; j <= n; j++)
    12 c[0][j] = 0;
    13 for(i = 1; i<= m; i++)
    14 {
    15 for(j = 1; j <= n; j++)
    16 {
    17 if(x[i-1] == y[j-1])
    18 {
    19 c[i][j] = c[i-1][j-1] + 1;
    20 b[i][j] = 0;
    21 }
    22 else if(c[i-1][j] >= c[i][j-1])
    23 {
    24 c[i][j] = c[i-1][j];
    25 b[i][j] = 1;
    26 }
    27 else
    28 {
    29 c[i][j] = c[i][j-1];
    30 b[i][j] = -1;
    31 }
    32 }
    33 }
    34 }
    35
    36 void PrintLCS(int b[][MAXLEN], char *x, int i, int j)
    37 {
    38 if(i == 0 || j == 0)
    39 return;
    40 if(b[i][j] == 0)
    41 {
    42 PrintLCS(b, x, i-1, j-1);
    43 printf("%c ", x[i-1]);
    44 }
    45 else if(b[i][j] == 1)
    46 PrintLCS(b, x, i-1, j);
    47 else
    48 PrintLCS(b, x, i, j-1);
    49 }
    50
    51 int main(int argc, char **argv)
    52 {
    53 char x[MAXLEN] = {"ABCBDAB"};
    54 char y[MAXLEN] = {"BDCABA"};
    55 int b[MAXLEN][MAXLEN];
    56 int c[MAXLEN][MAXLEN];
    57 int m, n;
    58
    59 m = strlen(x);
    60 n = strlen(y);
    61
    62 LCSLength(x, y, m, n, c, b);
    63 PrintLCS(b, x, m, n);
    64
    65 return 0;
    66 }

      



  • 相关阅读:
    Solr与Lucene的区别
    查询如下课程平均成绩和及格率的百分数(用"1行"显示): 企业管理(001),马克思(002),OO&UML (003),数据库(004)
    按平均成绩从高到低显示所有学生的“数据库”、“企业管理”、“英语”三门的课程成绩,按如下形式显示: 学生ID,,数据库,企业管理,英语,有效课程数,有效平均分
    按各科平均成绩从低到高和及格率的百分数从高到低顺序
    设计模式
    查询各科成绩最高和最低的分:以如下形式显示:课程ID,最高分,最低分
    什么是Session共享?请举出使用场景
    vue中监听路由参数变化
    获取DOM元素到页面顶部的距离,亲测有效版本(转载)
    css页面滚动条出现时防止页面跳动的方法
  • 原文地址:https://www.cnblogs.com/DanielZheng/p/2148660.html
Copyright © 2020-2023  润新知