题目链接:https://vjudge.net/problem/LightOJ-1395
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.
If you choose the ith door, it can either take you back to the same position where you begun in xi minutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can remember last K doors you have chosen. And when you are about to choose a door, you never choose a door that is already visited by you. Or we can say that you never choose a door that is visited as one of the last K doors. And the probability of choosing any remaining door is equal.
Now you want to find the expected time to get out of the maze.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains a blank line and two integers n K (1 ≤ n ≤ 100, 0 ≤ K ≤ n). The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it's negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.
Output
For each case, print the case number and the expected time to get out of the maze. If it's impossible to get out of the maze, print '-1'. Otherwise print the result. Error less than 10-6 will be ignored.
Sample Input |
Output for Sample Input |
4 2 0 10 10 2 0 10 -10 3 1 10 -10 -20 3 2 10 -10 -20 |
Case 1: 10 Case 2: 20.000 Case 3: 30.0000000000 Case 4: 25.0000000000 |
题意:
有n扇门,一扇门要么能在特定时间内把人带出迷宫,要么能在特定时间内把人带会原地,人能记住前k个选择,每扇门被选择的几率是相等的。问走出迷宫的平均时间。
题解:
1.LightOJ - 1027 A Dangerous Maze此题的强化版。
2.简称能把人带出去的为A门,带回原地的为B门。假设A门有cnt1扇,B门有cnt2扇,cost1为经过A门的平均时间,cost2为经过B门的平均时间。因为所有门被选中的概率是相等的,所以经过任意一扇A门所用的时间可用cost1代替,经过任意一扇B门所用的时间可用cost2代替。
3.人可以记住前k个选择,可知这k个选择必定都为B门。当k>cnt2时,即人能够把所有B门都记住并且还有剩余,但这些剩余是没用的,因为下一次选择必定是A门。所以只需考虑min(cnt2, k)。
4.取k = min(cnt2, k),设dp[i]为:在记住了i个选择的状况下,走出去所需的平均时间。
当i==k时,dp[k] = (cnt1/(n-k))*cost1 + ( (cnt2-k)/(n-k))*(cost2+dp[k]) ,移项得:dp[k] = cost1 + ((cnt2-k)/cnt1)*cost2
当i < k时,dp[i] = (cnt1/(n-i))*cost1 + ((cnt2-i)/(n-i))*(cost2+dp[i+1]) 。
则dp[0]即为答案。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const double EPS = 1e-6; 15 const int INF = 2e9; 16 const LL LNF = 9e18; 17 const int MOD = 1e5; 18 const int MAXN = 1e2+10; 19 20 double dp[MAXN]; 21 int main() 22 { 23 int T, kase = 0, n, k; 24 scanf("%d", &T); 25 while(T--) 26 { 27 int cnt1 = 0, cnt2 = 0; 28 double cost1 = 0, cost2 = 0; 29 scanf("%d%d", &n,&k); 30 for(int i = 1; i<=n; i++) 31 { 32 int val; 33 scanf("%d", &val); 34 if(val>0) cnt1++, cost1 += val; 35 else cnt2++, cost2 -= val; 36 } 37 if(cnt1==0) 38 { 39 printf("Case %d: %d ", ++kase, -1); 40 continue; 41 } 42 if(cnt1==n) 43 { 44 printf("Case %d: %.8lf ", ++kase, cost1/cnt1); 45 continue; 46 } 47 cost1 /= cnt1; 48 cost2 /= cnt2; 49 k = min(k, cnt2); 50 dp[k] = cost1 + 1.0*(cnt2-k)/cnt1*cost2; 51 for(int i = k-1; i>=0; i--) 52 dp[i] = 1.0*cnt1/(n-i)*cost1 + 1.0*(cnt2-i)/(n-i)*(cost2+dp[i+1]); 53 printf("Case %d: %.8f ", ++kase, dp[0]); 54 } 55 }