题目链接:https://vjudge.net/problem/LightOJ-1220
Time Limit: 0.5 second(s) | Memory Limit: 32 MB |
Dr. Mob has just discovered a Deathly Bacteria. He named it RC-01. RC-01 has a very strange reproduction system. RC-01 lives exactly x days. Now RC-01 produces exactly p new deadly Bacteria where x = bp (where b, p are integers). More generally, x is a perfect pth power. Given the lifetime x of a mother RC-01 you are to determine the maximum number of new RC-01 which can be produced by the mother RC-01.
Input
Input starts with an integer T (≤ 50), denoting the number of test cases.
Each case starts with a line containing an integer x. You can assume that x will have magnitude at least 2 and be within the range of a 32 bit signed integer.
Output
For each case, print the case number and the largest integer p such that x is a perfect pth power.
Sample Input |
Output for Sample Input |
3 17 1073741824 25 |
Case 1: 1 Case 2: 30 Case 3: 2 |
题意:
给出一个数x(可以为负数,绝对值大于等于2), 求使得满足 x = b^p 的最大p。
题解:
1.对x进行质因子分解。
2.取x所有的质因子个数的最大公约数p,如果x为负数,那么p就只能为奇数,所以一直除以2,直到p为奇数。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 const int MOD = 1e9+7; 17 const int MAXN = 1e6+10; 18 19 bool notprime[MAXN+1]; 20 int prime[MAXN+1]; 21 void getPrime() 22 { 23 memset(notprime, false, sizeof(notprime)); 24 notprime[0] = notprime[1] = true; 25 prime[0] = 0; 26 for (int i = 2; i<=MAXN; i++) 27 { 28 if (!notprime[i])prime[++prime[0]] = i; 29 for (int j = 1; j<=prime[0 ]&& prime[j]<=MAXN/i; j++) 30 { 31 notprime[prime[j]*i] = true; 32 if (i%prime[j] == 0) break; 33 } 34 } 35 } 36 37 int fatCnt; 38 LL factor[1000][2]; 39 void getFactors(LL n) 40 { 41 LL tmp = n; 42 fatCnt = 0; 43 for(int i = 1; prime[i]<=tmp/prime[i]; i++) 44 { 45 if(tmp%prime[i]==0) 46 { 47 factor[++fatCnt][0] = prime[i]; 48 factor[fatCnt][1] = 0; 49 while(tmp%prime[i]==0) tmp /= prime[i], factor[fatCnt][1]++; 50 } 51 } 52 if(tmp>1) factor[++fatCnt][0] = tmp, factor[fatCnt][1] = 1; 53 } 54 55 int gcd(int a, int b) 56 { 57 return b==0?a:gcd(b, a%b); 58 } 59 60 int main() 61 { 62 getPrime(); 63 int T, kase = 0; 64 scanf("%d", &T); 65 while(T--) 66 { 67 LL n; 68 scanf("%lld", &n); 69 getFactors(abs(n)); 70 LL p = factor[1][1]; 71 for(int i = 2; i<=fatCnt; i++) 72 p = gcd(p, factor[i][1]); 73 74 while(n<0 && p%2==0) p /= 2; 75 printf("Case %d: %d ", ++kase, p); 76 } 77 return 0; 78 }