题目链接:https://vjudge.net/problem/HDU-1964
Pipes
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 987 Accepted Submission(s): 494
Problem Description
The construction of office buildings has become a very standardized task. Pre-fabricated modules are combined according to the customer’s needs, shipped from a faraway factory, and assembled on the construction site. However, there are still some tasks that require careful planning, one example being the routing of pipes for the heating system.
Amodern office building ismade up of squaremodules, one on each floor being a service module from which (among other things) hot water is pumped out to the other modules through the heating pipes. Each module (including the service module) will have heating pipes connecting it to exactly two of its two to four neighboring modules. Thus, the pipes have to run in a circuit, from the service module, visiting each module exactly once, before finally returning to the service module. Due to different properties of the modules, having pipes connecting a pair of adjacent modules comes at different costs. For example, some modules are separated by thick walls, increasing the cost of laying pipes. Your task is to, given a description of a floor of an office building, decide the cheapest way to route the heating pipes.
Amodern office building ismade up of squaremodules, one on each floor being a service module from which (among other things) hot water is pumped out to the other modules through the heating pipes. Each module (including the service module) will have heating pipes connecting it to exactly two of its two to four neighboring modules. Thus, the pipes have to run in a circuit, from the service module, visiting each module exactly once, before finally returning to the service module. Due to different properties of the modules, having pipes connecting a pair of adjacent modules comes at different costs. For example, some modules are separated by thick walls, increasing the cost of laying pipes. Your task is to, given a description of a floor of an office building, decide the cheapest way to route the heating pipes.
Input
The first line of input contains a single integer, stating the number of floors to handle. Then follow n floor descriptions, each beginning on a new line with two integers, 2 <= r <= 10 and 2 <= c <= 10, defining the size of the floor – r-by-c modules. Beginning on the next line follows a floor description in ASCII format, in total 2r + 1 rows, each with 2c + 2 characters, including the final newline. All floors are perfectly rectangular, and will always have an even number of modules. All interior walls are represented by numeric characters, ’0’ to ’9’, indicating the cost of routing pipes through the wall (see sample input).
Output
For each test case, output a single line with the cost of the cheapest route.
Sample Input
3
4 3
#######
# 2 3 #
#1#9#1#
# 2 3 #
#1#7#1#
# 5 3 #
#1#9#1#
# 2 3 #
#######
4 4
#########
# 2 3 3 #
#1#9#1#4#
# 2 3 6 #
#1#7#1#5#
# 5 3 1 #
#1#9#1#7#
# 2 3 0 #
#########
2 2
#####
# 1 #
#2#3#
# 4 #
#####
Sample Output
28
45
10
Source
Recommend
wangye
题意:
给出一个n*m(n、m<=10)的棋盘,对于一个格子,分别给出它与四个方向相连所需要的花费(即打穿这堵墙所需的花费),求一个回路使得这个回路经过所有的格子刚好一次,且花费是最小的,输出最小花费。
题解:
与此题(URAL1519 Formula 1 )无异,只不过把统计个数改成求最小值。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <vector> 6 #include <cmath> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 using namespace std; 13 typedef long long LL; 14 const int INF = 2e9; 15 const LL LNF = 9e18; 16 const int MOD = 1e9+7; 17 const int MAXN = 1e5; 18 const int HASH = 1e4; 19 20 int n, m, last_x, last_y; 21 bool maze[15][15]; 22 int down_cost[15][15], ri_cost[15][15]; 23 24 struct 25 { 26 int size, head[HASH], next[MAXN]; 27 LL state[MAXN]; 28 int cost[MAXN]; 29 30 void init() 31 { 32 size = 0; 33 memset(head, -1, sizeof(head)); 34 } 35 36 void insert(LL status, int Cost) 37 { 38 int u = status%HASH; 39 for(int i = head[u]; i!=-1; i = next[i]) 40 { 41 if(state[i]==status) 42 { 43 cost[i] = min(cost[i], Cost); 44 return; 45 } 46 } 47 state[size] = status; 48 cost[size] = Cost; 49 next[size] = head[u]; 50 head[u] = size++; 51 } 52 53 }Hash_map[2]; 54 55 struct 56 { 57 int code[13]; 58 LL encode(int m) 59 { 60 LL status = 0; 61 int id[13], cnt = 0; 62 memset(id, -1, sizeof(id)); 63 id[0] = 0; 64 for(int i = m; i>=0; i--) 65 { 66 if(id[code[i]]==-1) id[code[i]] = ++cnt; 67 code[i] = id[code[i]]; 68 status <<= 3; 69 status += code[i]; 70 } 71 return status; 72 } 73 74 void decode(int m, LL status) 75 { 76 memset(code, 0, sizeof(code)); 77 for(int i = 0; i<=m; i++) 78 { 79 code[i] = status&7; 80 status >>= 3; 81 } 82 } 83 84 void shift(int m) 85 { 86 for(int i = m-1; i>=0; i--) 87 code[i+1] = code[i]; 88 code[0] = 0; 89 } 90 91 }Line; 92 93 //插头的花费在新建的时候加进去 94 void transfer(int i, int j, int cur) 95 { 96 for(int k = 0; k<Hash_map[cur].size; k++) 97 { 98 LL status = Hash_map[cur].state[k]; 99 LL Cost = Hash_map[cur].cost[k]; 100 Line.decode(m, status); 101 int up = Line.code[j]; 102 int left = Line.code[j-1]; 103 104 if(!up && !left) 105 { 106 if(maze[i+1][j] && maze[i][j+1]) 107 { 108 Line.code[j] = Line.code[j-1] = 5; //最多只有5个连通分量 109 Hash_map[cur^1].insert(Line.encode(m), Cost+down_cost[i][j]+ri_cost[i][j]); 110 } 111 } 112 else if( (left&&!up) || (!left&&up) ) 113 { 114 int line = left?left:up; 115 if(maze[i][j+1]) 116 { 117 Line.code[j-1] = 0; 118 Line.code[j] = line; 119 Hash_map[cur^1].insert(Line.encode(m), Cost+ri_cost[i][j]); 120 } 121 if(maze[i+1][j]) 122 { 123 Line.code[j-1] = line; 124 Line.code[j] = 0; 125 if(j==m) Line.shift(m); 126 Hash_map[cur^1].insert(Line.encode(m), Cost+down_cost[i][j]); 127 } 128 } 129 else 130 { 131 if(up!=left) 132 { 133 Line.code[j] = Line.code[j-1] = 0; 134 for(int t = 0; t<=m; t++) 135 if(Line.code[t]==up) 136 Line.code[t] = left; 137 if(j==m) Line.shift(m); 138 Hash_map[cur^1].insert(Line.encode(m), Cost); 139 } 140 else if(i==last_x && j==last_y) 141 { 142 Line.code[j] = Line.code[j-1] = 0; 143 if(j==m) Line.shift(m); 144 Hash_map[cur^1].insert(Line.encode(m), Cost); 145 } 146 } 147 } 148 } 149 150 int main() 151 { 152 int T; 153 char str[50]; 154 scanf("%d", &T); 155 while(T--) 156 { 157 scanf("%d%d", &n, &m); getchar(); 158 memset(maze, false, sizeof(maze)); 159 for(int i = 1; i<=n; i++) 160 for(int j = 1; j<=m; j++) 161 maze[i][j] = true; 162 163 gets(str); 164 for(int i = 1; i<n; i++) 165 { 166 gets(str); 167 for(int j = 1; j<m; j++) 168 ri_cost[i][j] = str[j*2] - '0'; 169 gets(str); 170 for(int j = 1; j<=m; j++) 171 down_cost[i][j] = str[j*2-1] - '0'; 172 } 173 gets(str); 174 for(int j = 1; j<m; j++) 175 ri_cost[n][j] = str[j*2] - '0'; 176 gets(str); 177 last_x = n; 178 last_y = m; 179 180 int cur = 0; 181 Hash_map[cur].init(); 182 Hash_map[cur].insert(0, 0); 183 for(int i = 1; i<=n; i++) 184 for(int j = 1; j<=m; j++) 185 { 186 Hash_map[cur^1].init(); 187 transfer(i, j, cur); 188 cur ^= 1; 189 } 190 191 LL last_status = 0; 192 LL ans = Hash_map[cur].size?Hash_map[cur].cost[last_status]:0; 193 printf("%d ", ans); 194 } 195 }