题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1024
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31798 Accepted Submission(s): 11278
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
题解:
1.设last_max[i][j]为:处理到第j个数时,第j个数属于第i个序列的最大值。last_max[i][j]必定包含a[j]。
2.设all_max[i][j]为 :处理到第j个数时, 分成i个序列的最大值。all_max[i][j]不一定包含a[j], 其值实际上是 max( last_max[i][k] ) 其中i<=k<=j,all_max数组的实际作用是:当a[j]独立出来自己作为一个序列时,找到前面i-1个序列和的最大值, 以便与a[j]拼接成i个序列。
3.状态转移:last_max[i][j] = max( last_max[i][j-1], all_max[i-1][j-1] ) + a[j]。即以a[j]是否独立出来自己作为一个序列来讨论。
4.观察状态转移方程, last_max数组不需要知道上一步的信息,所以只需要开一维;all_max数组只需要知道上一步的信息,所以可以用滚动数组以节省空间。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <vector> 7 #include <queue> 8 #include <stack> 9 #include <map> 10 #include <string> 11 #include <set> 12 #define ms(a,b) memset((a),(b),sizeof((a))) 13 using namespace std; 14 typedef long long LL; 15 const double EPS = 1e-8; 16 const int INF = 2e9; 17 const LL LNF = 2e18; 18 const int MAXN = 1e6+10; 19 20 int a[MAXN]; 21 int last_max[MAXN], all_max[2][MAXN]; 22 int main() 23 { 24 int n, m; 25 while(scanf("%d%d",&m, &n)!=EOF) 26 { 27 for(int i = 1; i<=n; i++) 28 scanf("%d", &a[i]); 29 30 ms(all_max, 0); 31 ms(last_max, 0); 32 33 for(int i = 1; i<=m; i++) 34 { 35 last_max[i] = all_max[i&1][i] = last_max[i-1]+a[i]; 36 for(int j = i+1; j<=n; j++) 37 { 38 last_max[j] = max(last_max[j-1], all_max[!(i&1)][j-1]) + a[j]; 39 all_max[i&1][j] = max(all_max[i&1][j-1], last_max[j]); 40 /**以上代码的实际意义为: 41 last_max[i][j] = max(last_max[i][j-1], all_max[i-1][j-1]) + a[j]; 42 all_max[i][j] = max(all_max[i][j-1], last_max[i][j]); 43 **/ 44 } 45 } 46 printf("%d ", all_max[m&1][n]); 47 } 48 return 0; 49 }