• 【信号与线性系统】为什么求解零输入响应时转移算子H(p)不能约分,但计算单位冲激响应时却可以约分?


    为什么求零输入响应rZI时转移算子H(p)不能约分?

    .
    .
    .
    我们知道,求零输入响应rZI的实质其实是求解微分方程 D(p)r(t) = N(p)e(t) 的解。由于这里 e(t)=0 ,所以这是一个齐次方程,那么我们求解的实际上是它的通解。我们知道,求通解,就是要完整地表示出它的解空间,如果我们因为某种缘故少求了其中一个基解,那么这个解空间就会丢失一个维度。
    .
    .
    .
    为了便于说明,这里设 D(p) = (p-a)(p-b) , N(p) = (p-a) , H(p) = N(p) / D(p) 。
    .
    .
    .
    则原微分方程变形为 (p-a)(p-b)rZI(t) = (p-a)e(t) , 当然也可以写成 rZI(t) = H(p)·0 。
    .
    .
    .
    在不约分的情况下,那么求解 (p-a)(p-b)rZI(t) = 0 ,只需求解 (p-a)r1ZI(t) = 0 和 (p-b)r2ZI(t) = 0 ,再利用线性性进行叠加求出通解即可。
    .
    .
    .
    可以求出通解 rZI(t) = c1eat + c2ebt ,它的解空间是二维的。
    .
    .
    .
    如果约分会怎样?原方程变为 (p-b)rZI(t) = e(t) , 此时,我们只能求解 (p-b)r2ZI(t) = 0 。而另一个方程 (p-a)r1ZI(t) = 0 的解消失了!
    .
    .
    .
    为什么?因为在我们对原方程进行约分的时候,我们默认 (p-a)r1ZI(t) ≠ 0 ,否则就不能约分。就是在这里,我们丢失了方程 (p-a)r1ZI(t) = 0 。
    .
    .
    .
    这就是症结所在。假如我们在约分时,记得补充 (p-a)r1ZI(t) = 0 的情况,那么我们仍然可以得到两个方程,这个时候仍然能够求出正确的通解。
    .
    .
    .

    为什么求单位冲激响应h(t)时转移算子H(p)又可以约分呢?

    .
    .
    .
    我们还是沿用上面的例子,并对它稍作改动,将会得到一个新的方程 (p-a)(p-b)h(t) = (p-a)δ(t) 。这里,方程右边 (p-a)δ(t) ≠ 0 ,我们所需要求的是一个非齐次特解,而且这个特解是唯一的。
    .
    .
    .
    既然已经排除了 (p-a)δ(t) = 0 的可能,那么我们可以放心地约去 (p-a) 。而且我们求的是特解,所以只需要求出一个正确的解即可,而不必像通解那样考虑整个解空间,也不用担心由于少了一个基解,使解空间降维的问题。
    .
    .
    .
    事实上,假定我们利用 h'(t) - bh(t) = δ(t) 求出了h(t) ,那么自然有 [h''(t) - bh'(t)] - a[h'(t) - bh(t)] = δ'(t) - aδ(t) ,即已经满足方程 (p-a)(p-b)h(t) = (p-a)δ(t) ,它就是一个正确的特解。我们只需要求出一个特解,那么这个h(t)正是我们需要的结果。
    .
    .
    .
    (完)

  • 相关阅读:
    Android 修改应用程序字体
    Activity A 跳转到Activity B 生命周期
    Android调用系统设置
    最近遇到adb connection 问题,总结一下
    今日写一篇散文 Textview settext 方法不能放入 int 参数 不然报错!
    计时线程Runnable和Handler的结合
    JMF 下载安装与测试 测试成功
    基本数据类型的介绍及转换,基本数据类型与字符串之间转换,字符串与字符数组之间转换以及字符串与字节数组之间转换
    超实用的Eclipse快捷键大全(解密为什么他们的代码写的又快又好~)
    JDK的下载、安装及Eclipse安装详细教程(内附:网盘win64版JDK安装包)
  • 原文地址:https://www.cnblogs.com/DM-Star/p/8543460.html
Copyright © 2020-2023  润新知