• opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测


                                        opencv-学习笔记(6)图像梯度Sobel以及canny边缘检测


     

    这章讲了

    1. sobel算子
    2. scharr算子
    3. Laplacion拉普拉斯算子
    4. 图像深度问题
    5. Canny检测

     

    图像梯度

    1. sobel算子和scharr算子

    sobel算子是高斯平滑与微分操作的结合体,所以它的抗噪声能力很强

    我们可以设定求导的方向xorder或者yorder。也可以设置卷积核的大学

    Ps当我们设置卷积核的大小为ksize=-1时候,这个函数会用

    3*3的scharr算子如下

    官方推荐在使用3*3滤波器时候要用scharr滤波器


    Laplacion算子

    拉普拉斯算子可以使用二阶导数的形式定义,可假设其离散实现类型于二阶Sobel导数实际上,

    Opencv在计算拉普拉斯算子时直接调用Sobel算子。

    计算公式如下

    拉普拉斯滤波器使用的卷积核

    Opencv在计算拉普拉斯算子时候是直接调用sobel算子的

    import cv2
    import numpy as np
    from matplotlib import pyplot as plt
    
    img=cv2.imread('1.jpg',0)
    
    #cv2.CV_64F 输出图像的深度(数据类型),可以使用-1与源图像保持一致 np.uint8
    laplacian=cv2.Laplacian(img,cv2.CV_64F)
    #参数1,0为只在x方向求一阶导数,最大可以求2阶导数,卷积核5*5
    #对x滤波就显示y波形
    sobelx=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
    #参数0,1为只在y方向求一阶导数,最大可以求2阶导数,卷积核5*5
    #对y滤波就显示x波形
    sobely=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
    
    cv2.imshow('one',img)
    cv2.imshow('lap',laplacian)
    cv2.imshow('sx',sobelx)
    cv2.imshow('sy',sobely)
    cv2.waitKey(0)


     

    图像深度问题

    看下面2个例子,

    都是用5*5的卷积核,只是输出图像的深度不同,第四张是原图深度

    水平的导数都消失了

    从第三章可以看出来,导数小于0的地方没有消失,但是图24消失了导数小于0的地方

     

     


    Canny边缘检测

    1. 首先我们要去除噪声5*5的高斯滤波器
    2. 我们计算图像的梯度计算图像x和y方向的一阶导数,根据两幅梯度体系找到边界的梯度大小和方向,(梯度一般总是和边界垂直,梯度方向被归为四类,垂直水平和对角线)
    3. 这是计算梯度大小和方向的函数
    4. 非极大值抑制,去除非边界的点,对每一个像素检查,看这个点梯度是不是周围具有相同梯度方向的点中最大的。
    5. 滞后阀值----设置两个阀值minVal和maxVal当图像的灰度梯度高于maxVal时候被认为是真的边界,低于minVal就被抛弃,如果在两者之间的话就看这个点时候和某个被确认为真正边界的点相连,如果是就认为他也是边界,,否则抛弃。
    6. 如下图
    7.  

    8. 图中A高于maxVal被认为是真正的边界带你,C虽然低于maxVal但是高于minVAl且和A相连,所以C也是边界点。B被抛弃

               这一步中一些小的噪声点被去除,因为我们假设边界都是一些长的线段

    在opencv里面我们用一个函数来完成上面所有步骤

    cv2.Canny()

    Cv2.canny(图像对象,minVal,maxVal,用来计算梯度的Sobel卷积核大小Size=3,L2gradient)

             如果L2gradient是True就会用到上面的步骤

             如果L2gradient是false就会edge_graddient=|Gx^2|+|Gy^2|来代替

    代码如下,这里使用的是size=3的默认卷积核以及,L2gradient=True

    import cv2
    import numpy as np
    from matplotlib import pyplot as plt
    
    img=cv2.imread('new.jpg',1)
    minval=100
    maxval=200
    edges=cv2.Canny(img,minval,maxval,False)
    edges2=cv2.Canny(img,minval,maxval,True)
    cv2.imshow('dsd',img)
    cv2.imshow('s',edges)
    cv2.imshow('s2',edges2)
    k=cv2.waitKey(0)
    cv2.destroyAllWindows()

     

     

  • 相关阅读:
    Java:字符分割
    Java 线程池:newFixedThreadPool
    人类有限的自制力是相当脆弱的
    Arcgis模型构建器案例教程while和for实现通用的循环迭代功能
    通用化全功能、可视化搭建式、扁平化流线型、无代码零基础、探索式启发法、案例式现场化的ArcGIS模型构建器教程教材培训
    Arcgis模型构建器案例教程——while循环递归查找所有相邻的要素
    广西崇左市各地建成区排名最小是大新县
    Arcgis地理处理工具案例教程——批量修改坐标系
    Arcgis模型构建器可视化编程案例教程添加要素个数到文件名,要素类是否为空,删除空白要素类数据文件,删除工作空间里的空白数据文件
    Arcgis地理处理工具案例教程——多边形图层的最小覆盖范围边界
  • 原文地址:https://www.cnblogs.com/DJC-BLOG/p/9129034.html
Copyright © 2020-2023  润新知