二分答案 + 前缀和。
题面中式子的意思是每一个区间$[l, r]$的贡献是这个区间内$w_i geq W$的个数乘以这些$i$的$v_i$和。
很快发现了答案具有单调性,可以做两遍二分,分别看看小于$S$的值最大能取到多少以及大于$S$的最小能取到多少,然后取个$min$。
思考一下怎么判定,查询一个区间内比一个数大的数的个数和权值和,莫不是主席树???
被$dalao$$D$了,只要每一次都算一遍前缀和就好了,如果$w_i geq W$就把$i$和$v_i$计入贡献,查询是$O(1)$的。
时间复杂度$O(nlogn)$。
如果是主席树还多一个$log$。
Code:
#include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int N = 2e5 + 5; const int Maxn = 1e6 + 5; const ll inf = 1LL << 60; int n, m, w[N], sumCnt[N]; ll cur, v[N], sumVal[N]; struct Segment { int l, r; } seg[N]; template <typename T> inline void read(T &X) { X = 0; char ch = 0; T op = 1; for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') op = -1; for(; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; } inline ll solve(int mid) { sumCnt[0] = 0, sumVal[0] = 0LL; for(int i = 1; i <= n; i++) { sumCnt[i] = sumCnt[i - 1], sumVal[i] = sumVal[i - 1]; if(w[i] >= mid) ++sumCnt[i], sumVal[i] += v[i]; } ll res = 0LL; for(int i = 1; i <= m; i++) res += 1LL * (sumCnt[seg[i].r] - sumCnt[seg[i].l - 1]) * (sumVal[seg[i].r] - sumVal[seg[i].l - 1]); return res; } int main() { read(n), read(m), read(cur); for(int i = 1; i <= n; i++) read(w[i]), read(v[i]); for(int i = 1; i <= m; i++) read(seg[i].l), read(seg[i].r); int ln = 0, rn = Maxn, mid, res = 0; for(; ln <= rn; ) { mid = (ln + rn) / 2; if(solve(mid) <= cur) rn = mid - 1, res = mid; else ln = mid + 1; } ll tmp = solve(res), ans = cur - tmp; ln = 0, rn = Maxn, res = Maxn; for(; ln <= rn; ) { mid = (ln + rn) / 2; if(solve(mid) >= cur) ln = mid + 1, res = mid; else rn = mid - 1; } tmp = solve(res); if(tmp - cur < ans) ans = tmp - cur; printf("%lld ", ans); return 0; }