• Luogu 2149 [SDOI2009]Elaxia的路线


    感觉这题可以模板化。

    听说spfa死了,所以要练堆优化dijkstra。

    首先对$x_{1},y_{1},x_{2},y_{2}$各跑一遍最短路,然后扫一遍所有边看看是不是同时在两个点的最短路里面,如果是的话就把这条边加到一张新图中去,因为最短路一定没有环,所以最后造出来的这张新图一定是一个$DAG$,dp一遍求最长链即为答案。

    考虑一下怎么判断一条边是否在最短路里,设这条边连接的两个点是$x$,$y$,边权是$v$,如果它在最短路里面,那么有$dis(x_{1}, x) + v + dis(y_{1}, y) == dis(x_{1}, y_{1})$并且$dis(x_{2}, x) + v + dis(y_{2}, y) == dis(x_{2}, y_{2})$,注意第二个条件中$x$和$y$可以交换。加边的时候注意维持一下$DAG$的形态,可以把$x$和$y$到$x_{1}$的距离小的向距离大的连边。

    时间复杂度$O(nlogn)$,堆优化dij是瓶颈。

    感觉写得很长。

    Code:

    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <iostream>
    using namespace std;
    typedef pair <int, int> pin;
    
    const int N = 1505;
    const int M = 3e6 + 5;
    const int inf = 0x3f3f3f3f;
    
    int n, m, inx[M], iny[M], inv[M], deg[N], f[N], ans = 0;
    int c1, c2, c3, c4, tot = 0, head[N], dis[N], d[4][N];
    bool vis[N];
    
    struct Edge {
        int to, nxt, val;
    } e[M << 1];
    
    inline void add(int from, int to, int val) {
        e[++tot].to = to;
        e[tot].val = val;
        e[tot].nxt = head[from];
        head[from] = tot;
    }
    
    inline void read(int &X) {
        X = 0; char ch = 0; int op = 1;
        for(; ch > '9'|| ch < '0'; ch = getchar())
            if(ch == '-') op = -1;
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    inline void swap(int &x, int &y) {
        int t = x; x = y; y = t;
    }
    
    priority_queue <pin> Q;
    void dij(int st) {
        memset(dis, 0x3f, sizeof(dis));
        memset(vis, 0, sizeof(vis));
        Q.push(pin(dis[st] = 0, st));
        for(; !Q.empty(); ) {
            int x = Q.top().second; Q.pop();
            if(vis[x]) continue;
            vis[x] = 1;
            for(int i = head[x]; i; i = e[i].nxt) {
                int y = e[i].to;
                if(dis[y] > dis[x] + e[i].val) {
                    dis[y] = dis[x] + e[i].val;
                    Q.push(pin(-dis[y], y));
                }
            }
        }
    } 
    
    inline void chkMax(int &x, int y) {
        if(y > x) x = y;
    }
    
    int dfs(int x) {
        if(vis[x]) return f[x];
        vis[x] = 1;
        int res = 0;
        for(int i = head[x]; i; i = e[i].nxt) {
            int y = e[i].to;
            chkMax(res, dfs(y) + e[i].val);
        }
        return f[x] = res;
    }
    
    int main() {
        read(n), read(m), read(c1), read(c2), read(c3), read(c4);
        for(int i = 1; i <= m; i++) {
            read(inx[i]), read(iny[i]), read(inv[i]);
            add(inx[i], iny[i], inv[i]), add(iny[i], inx[i], inv[i]);
        }
        
        dij(c1); memcpy(d[0], dis, sizeof(d[0]));
        dij(c2); memcpy(d[1], dis, sizeof(d[1]));
        dij(c3); memcpy(d[2], dis, sizeof(d[2]));
        dij(c4); memcpy(d[3], dis, sizeof(d[3]));
        
    /*    for(int i = 1; i <= n; i++)
            printf("%d ", d[0][i]);
        printf("
    ");
        for(int i = 1; i <= n; i++)
            printf("%d ", d[1][i]);
        printf("
    ");
        for(int i = 1; i <= n; i++)
            printf("%d ", d[2][i]);
        printf("
    ");
        for(int i = 1; i <= n; i++)
            printf("%d ", d[3][i]);
        printf("
    ");   */
    
        
        tot = 0; memset(head, 0, sizeof(head));
        for(int i = 1; i <= m; i++) {
            int x = inx[i], y = iny[i], v = inv[i];
            if(d[0][x] + v + d[1][y] == d[0][c2])
                if(d[2][y] + v + d[3][x] == d[2][c4] || d[2][x] + v + d[3][y] == d[2][c4]) {
                    if(d[0][x] < d[0][y]) {
                        add(x, y, v);
                        deg[y]++;
                    } else {
                        add(y, x, v);
                        deg[x]++;
                    }
                }
            
            swap(x, y);
            if(d[0][x] + v + d[1][y] == d[0][c2])
                if(d[2][y] + v + d[3][x] == d[2][c4] || d[2][x] + v + d[3][y] == d[2][c4]) {
                    if(d[0][x] < d[0][y]) {
                        add(x, y, v);
                        deg[y]++;
                    } else {
                        add(y, x, v);
                        deg[x]++;
                    }
                }
        }
        
        memset(vis, 0, sizeof(vis));
        for(int i = 1; i <= n; i++) 
            if(deg[i] == 0 && !vis[i]) dfs(i);
        
    /*    for(int i = 1; i <= n; i++)
            printf("%d ", f[i]);
        printf("
    ");   */
        
        for(int i = 1; i <= n; i++)
            chkMax(ans, f[i]);
        
        printf("%d
    ", ans);
        return 0;    
    }
    View Code
  • 相关阅读:
    WebServce之Map类型传输
    WebService之跨域
    WebServce之拦截器
    Webservice之发布
    JAVA之ElasticSearch
    MonogoDb学习笔记
    DotNetCore自带Ioc使用程序集名称注入
    生产者与消费者
    哈希算法-Time33
    线程安全的集合操作类
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/9608876.html
Copyright © 2020-2023  润新知