辗转相减法的扩展 $gcd(x, y, z) = gcd(x, y - x, z - y)$ 当有n个数时也成立
所以构造$a_{i}$的差分数组$b_{i} = a_{i} - a_{i - 1}$,用一个线段树来维护b数组的gcd,这样每次区间修改相当于两次单点修改
考虑到询问的时候$ans = gcd(a_{l}, query(l +1, r))$所以我们再维护原数组a的值,直接差分之后用一个树状数组就好了
注意判断边界情况。
Code:
#include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int N = 5e5 + 5; int n, qn; ll a[N], b[N]; ll gcd(ll x, ll y) { return (!y) ? x : gcd(y, x % y); } template <typename T> inline void read(T &X) { X = 0; char ch = 0; T op = 1; for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') op = -1; for(; ch >= '0' && ch <= '9'; ch = getchar()) X = (X << 3) + (X << 1) + ch - 48; X *= op; } struct BinaryIndexTree { ll s[N]; #define lowbit(x) ((x) & (-x)) inline void add(int x, ll v) { for(; x <= n; x += lowbit(x)) s[x] += v; } inline ll query(int x) { ll res = 0; for(; x > 0; x -= lowbit(x)) res += s[x]; return res; } } B; struct SegT { ll s[N << 2]; #define lc p << 1 #define rc p << 1 | 1 #define mid ((l + r) >> 1) inline void up(int p) { if(p) s[p] = gcd(s[lc], s[rc]); } void build(int p, int l, int r) { if(l == r) { s[p] = b[l]; return; } build(lc, l, mid); build(rc, mid + 1, r); up(p); } void modify(int p, int l, int r, int x, ll v) { if(x == l && x == r) { s[p] += v; return; } if(x <= mid) modify(lc, l, mid, x, v); else modify(rc, mid + 1, r, x, v); up(p); } ll query(int p, int l, int r, int x, int y) { if(x > y) return 1LL; if(x <= l && y >= r) return s[p]; ll res; if(x <= mid && y > mid) res = gcd(query(lc, l, mid, x, y), query(rc, mid + 1, r, x, y)); else if(y <= mid) res = query(lc, l, mid, x, y); else if(x > mid) res = query(rc, mid + 1, r, x, y); return res; } } A; inline ll abs(ll x) { return x > 0 ? x : -x; } int main() { read(n), read(qn); for(int i = 1; i <= n; i++) read(a[i]); for(int i = 1; i <= n; i++) b[i] = a[i] - a[i - 1]; for(int i = 1; i <= n; i++) B.add(i, b[i]); A.build(1, 1, n); char op[3]; for(int x, y; qn--; ) { scanf("%s", op); read(x), read(y); if(op[0] == 'C') { ll v; read(v); B.add(x, v), A.modify(1, 1, n, x, v); if(y < n) B.add(y + 1, -v), A.modify(1, 1, n, y + 1, -v); } else { if(x < y) printf("%lld ", gcd(B.query(x), abs(A.query(1, 1, n, x + 1, y)))); else printf("%lld ", B.query(x)); } } return 0; }