• Luogu 4238 【模板】多项式求逆


    疯狂补板中。

    考虑倍增实现。

    假设多项式只有一个常数项,直接对它逆元就可以了。

    现在假如要求$G(x)$

    $$F(x)G(x) equiv 1 (mod x^n)$$

    而我们已经求出了$H(x)$

    $$F(x)H(x) equiv 1(mod x^{left lceil frac{n}{2} ight ceil})$$

    两式相减,

    $$F(x)(G(x) - H(x)) equiv 0(mod x^{left lceil frac{n}{2} ight ceil})$$

    $F(x) mod  x^{left lceil frac{n}{2} ight ceil}$一定不会是$0$,那么

    $$G(x) - H(x) equiv 0(mod x^{left lceil frac{n}{2} ight ceil})$$

    两边平方,

    $$G(x)^2 + H(x)^2 - 2G(x)H(x) equiv 0(mod x^n)$$

    注意到后面的模数也平方了。

    因为多项式$G(x) - H(x)$次数$in [0, left lceil frac{n}{2} ight ceil]$的项的系数全都是$0$,所以平方之后次数在$[0, n]$之间的项的系数也全都是$0$。

    两边乘上$F(x)$,

    $$F(x)G(x)^2 + F(x)H(x)^2 - 2F(x)G(x)H(x) equiv G(x) + F(x)H(x)^2 - 2H(x) equiv 0(mod x^n)$$

    就得到了

    $$G(x) equiv 2H(x) - F(x)H(x)^2(mod x^n)$$

    递归实现比较清爽,非递归的比递归的快挺多的。

    时间复杂度为$O(nlogn)$。

    实现的时候有两个小细节:

    1、$H(x)$的长度是$frac{n}{2}$的,$F(x)$的长度是$n$,所以$F(x)H(x)^2$的长度是$2n$。

    2、递归的时候注意那个上取整符号。

    Code:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    
    const int N = 1 << 20;
    
    int n;
    ll f[N], g[N];
    
    namespace Poly {
        const int L = 1 << 20;
        const ll gn = 3;
        const ll Mod[4] = {0, 998244353LL, 1004535809LL, 469762049LL};
        
        int lim, pos[L];
        
        inline ll fmul(ll x, ll y, ll P) {
            ll res = 0;
            for (x %= P; y; y >>= 1) {
                if (y & 1) res = (res + x) % P;
                x = (x + x) % P;
            }
            return res;
        }
        
        inline ll fpow(ll x, ll y, ll P) {
            ll res = 1LL;
            for (x %= P; y > 0; y >>= 1) {
                if (y & 1) res = res * x % P;
                x = x * x % P;
            }
            return res;
        }
        
        inline void prework(int len) {
            int l = 0;
            for (lim = 1; lim < len; lim <<= 1, ++l);
            for (int i = 0; i < lim; i++)
                pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1));
        }
        
        inline void ntt(ll *c, ll opt, ll P) {
            for (int i = 0; i < lim; i++) 
                if (i < pos[i]) swap(c[i], c[pos[i]]);
            for (int i = 1; i < lim; i <<= 1) {
                ll wn = fpow(gn, (P - 1) / (i << 1), P);
                if (opt == -1) wn = fpow(wn, P - 2, P);
                for (int len = i << 1, j = 0; j < lim; j += len) {
                    ll w = 1;
                    for (int k = 0; k < i; k++, w = w * wn % P) {
                        ll x = c[j + k], y = c[j + k + i] * w % P;
                        c[j + k] = (x + y) % P, c[j + k + i]  = (x - y + P) % P;
                    }
                }
            }
            
            if (opt == -1) {
                ll inv = fpow(lim, P - 2, P);
                for (int i = 0; i < lim; i++) c[i] = c[i] * inv % P;
            }
        }
        
    /*    inline ll get(int k, ll P) {
            ll M = Mod[1] * Mod[2];
            ll t1 = fmul(Mod[2] * ans[1][k] % M, fpow(Mod[1], Mod[2] - 2, Mod[2]), M);
            ll t2 = fmul(Mod[1] * ans[2][k] % M, fpow(Mod[2], Mod[1] - 2, Mod[1]), M);
            ll t = (t1 + t2) % M;
            ll res = (ans[3][k] - t % Mod[3] + Mod[3]) % Mod[3];
            res = res * fpow(M, Mod[3] - 2, Mod[3]) % Mod[3];
            res = ((res % P) * (M % P) % P + (t % P)) % P;
            return res;
        }   */
        
        ll f[L], g[L];
        void inv(ll *a, ll *b, int len, ll P) {
            if (len == 1) {
                b[0] = fpow(a[0], P - 2, P);
                return;
            }
            inv(a, b, (len + 1) >> 1, P);
            
            prework(len << 1);
            for (int i = 0; i < lim; i++) f[i] = g[i] = 0;
            for (int i = 0; i < len; i++) f[i] = a[i], g[i] = b[i];
            ntt(f, 1, P), ntt(g, 1, P);
            for (int i = 0; i < lim; i++) g[i] = g[i] * (2LL - f[i] * g[i] % P + P) % P;
            ntt(g, -1, P);
            for (int i = 0; i < len; i++) b[i] = g[i];
        }
        
    };
    
    template <typename T>
    inline void read(T &X) {
        X = 0; char ch = 0; T op = 1;
        for (; ch > '9'|| ch < '0'; ch = getchar())
            if (ch == '-') op = -1;
        for (; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    int main() {
        read(n);
        for (int i = 0; i < n; i++) read(f[i]);
        Poly :: inv(f, g, n, Poly :: Mod[1]);
        for (int i = 0; i < n; i++)
            printf("%lld%c", g[i], i == (n - 1) ? '
    ' : ' ');
        return 0;
    }
    递归版
    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long ll;
    
    const int N = 3e5 + 5;
    const ll P = 998244353LL;
    
    int n, lim, pos[N];
    ll a[N], f[2][N], tmp[N];
    
    template <typename T>
    inline void read(T &X) {
        X = 0; char ch = 0; T op = 1;
        for (; ch > '9' || ch < '0'; ch = getchar())
            if (ch == '-') op = -1;
        for (; ch >= '0' && ch <= '9'; ch = getchar())
            X = (X << 3) + (X << 1) + ch - 48;
        X *= op;
    }
    
    template <typename T>
    inline void swap(T &x, T &y) {
        T t = x; x = y; y = t;
    }
    
    inline ll fpow(ll x, ll y) {
        ll res = 1LL;
        for (; y > 0; y >>= 1) {
            if (y & 1) res = res * x % P;
            x = x * x % P;
        }
        return res;
    }
    
    inline void ntt(ll *c, int opt) {
        for (int i = 0; i < lim; i++)
            if(i < pos[i]) swap(c[i], c[pos[i]]);
        for (int i = 1; i < lim; i <<= 1) {
            ll wn = fpow(3, (P - 1) / (i << 1));
            if(opt == -1) wn = fpow(wn, P - 2);
            for (int len = i << 1, j = 0; j < lim; j += len) {
                ll w = 1;
                for (int k = 0; k < i; k++, w = w * wn % P) {
                    ll x = c[j + k], y = c[j + k + i] * w % P;
                    c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P;
                }
            }
        }
        
        if (opt == -1) {
            ll inv = fpow(lim, P - 2);
            for (int i = 0; i < lim; i++) c[i] = c[i] * inv % P;
        }
    }
    
    int main() {
        read(n);
        for (int i = 0; i < n; i++) read(a[i]);
        
        f[0][0] = fpow(a[0], P - 2);
        int dep = 1;
        for (int len = 1; len < n; len <<= 1, ++dep) {
            lim = len << 1;
            for (int i = 0; i < lim; i++) tmp[i] = a[i];
            
            lim <<= 1;
            for (int i = 0; i < lim; i++) pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << dep);
            for (int i = (len << 1); i < lim; i++) tmp[i] = 0;
    
            int now = dep & 1, pre = (dep - 1) & 1;
            ntt(f[pre], 1), ntt(tmp, 1);
            for (int i = 0; i < lim; i++) 
                f[now][i] = (2LL * f[pre][i] % P - tmp[i] * f[pre][i] % P * f[pre][i] % P + P) % P;
            ntt(f[now], -1);
            
            for (int i = (len << 1); i < lim; i++) f[now][i] = 0;
        }
        
        --dep;
        for (int i = 0; i < n; i++)
            printf("%lld%c", f[dep & 1][i], i == (n - 1) ? '
    ' : ' ');
        
        return 0;
    }
    非递归版
  • 相关阅读:
    压测 linux + jexus + mono + asp.net mvc
    System.TypeInitializationException: The type initializer for 'Mono.Unix.Native.Stdlib' threw an exception.
    IIS配置文件路径
    服务号(已认证)与订阅号(已认证)权限区别
    解决:jquery ajax非首次请求Server端获取cookie值中文乱码问题
    解决:新版火狐浏览器3d打不开
    java中的 json 处理包
    GroupId和ArtifactId
    java环境变量完整版
    POJ-3258
  • 原文地址:https://www.cnblogs.com/CzxingcHen/p/10276615.html
Copyright © 2020-2023  润新知