• Leetcode. 回文字符串的分割和最少分割数


    Q1: 回文字符串的分割

    Given a string s, partition s such that every substring of the partition is a palindrome.Return all possible palindrome partitioning of s.

    For example, given s = "aab",
    Return
    [ 
       ["aa","b"],
       ["a","a","b"]
    ]

    算法
    回溯法.

    • 从字符串开头扫描, 找到一个下标i, 使得 str[0..i]是一个回文字符串
    • 将str[0..i]记入临时结果中
    • 然后对于剩下的字符串str[i+1, end]递归调用前面的两个步骤, 直到i+1 >= end结束
    • 这时候, 我们找到了一组结果.
    • 开始回溯. 以回溯到最开始的位置i为例. 从i开始, 向右扫描, 找到第一个位置j, 满足str[0..j]为一个回文字符串. 然后重复前面的四个步骤.

    以字符串 "ababc" 为例.

    • 首先找到 i = 0, "a"为回文字符串.
    • 然后在子串"babc"中继续查找, 找到下一个 "b", 递归找到 "a", "b", "c". 至此我们找到了第一组结果. ["a", "b", "a", "b", "c"]
    • 将c从结果中移除, 位置回溯到下标为3的"b". 从"b"开始向后是否存在str[3..x]为回文字符串, 发现并没有.
    • 回溯到下标为2的"a", 查找是否存在str[2..x]为回文字符串, 发现也没有.
    • 继续回溯到下标为1的"b", 查找是否存在str[1..x]为回文字符串, 找到了"bab", 记入到结果中. 然后从下标为4开始继续扫描. 找到了下一个回文字符串"c".
    • 我们找到了下一组结果 ["a", "bab", "c"]
    • 然后继续回溯 + 递归.

    实现

    class Solution {
    public:
        vector<vector<string>> partition(string s) {
            std::vector<std::vector<std::string> > results;
            std::vector<std::string> res;
            dfs(s, 0, res, results);
            return results;
        }
    private:
        void dfs(std::string& s, int startIndex,
                std::vector<std::string> res,
                std::vector<std::vector<std::string> >& results)
        {
            if (startIndex >= s.length())
            {
                results.push_back(res);
            }
            for (int i = startIndex; i < s.length(); ++i)
            {
                int l = startIndex;
                int r = i;
                while (l <= r && s[l] == s[r]) ++l, --r;
                if (l >= r)
                {
                    res.push_back(s.substr(startIndex, i - startIndex + 1));
                    dfs(s, i + 1, res, results);
                    res.pop_back();
                }
            }
        }
    };
    

      

    Q2 回文字符串的最少分割数

    Given a string s, partition s such that every substring of the partition is a palindrome.
    Return the minimum cuts needed for a palindrome partitioning of s.

    For example, given s = "aab",  
    Return 1 since the palindrome partitioning 
    ["aa","b"] could be produced using 1 cut.

    算法
    Calculate and maintain 2 DP states:

    • dp[i][j] , which is whether s[i..j] forms a pal
    • isPalindrome[i], which is the minCut for s[i..n-1]
    • Once we comes to a pal[i][j]==true:
      • if j==n-1, the string s[i..n-1] is a Pal, minCut is 0, d[i]=0;
      • else: the current cut num (first cut s[i..j] and then cut the rest s[j+1...n-1]) is 1+d[j+1], compare it to the exisiting minCut num d[i], repalce if smaller.
        d[0] is the answer.

    实现

    class Solution {
    
    public:
        int minCut(std::string s) {
            int len = s.length();
            int minCut = 0;
            bool isPalindrome[len][len] = {false};
            int dp[len + 1] = {INT32_MAX};
            dp[len] = -1;
            for (int leftIndex = len - 1; leftIndex >= 0; --leftIndex)
            {
                for (int midIndex = leftIndex; midIndex <= len - 1; ++midIndex)
                {
                    if ((midIndex - leftIndex < 2 || isPalindrome[leftIndex + 1][midIndex -1])
                       && s[leftIndex] == s[midIndex])
                    {
                        isPalindrome[leftIndex][midIndex] = true;
                        dp[leftIndex] = std::min(dp[midIndex + 1] + 1, dp[leftIndex]);
                    }
                }
                std::cout << leftIndex << ": " << dp[leftIndex] << std::endl;
            }
            return dp[0];
        }   
    };
    

      

  • 相关阅读:
    轮播图2
    点击按钮切换轮播图
    轮播图
    2016.5.5_十进制转二进制【ABAP】
    2016.4.26_longtext长文本【ABAP】
    2016.4.26_动态内表【ABAP】
    2016.4.26_下载abap代码【ABAP】
    2016.4.15_debug小技巧【ABAP】
    2016.4.1_js向controller传数据【笔记】
    2016.3.21_TABLE CONTROL【ABAP】
  • 原文地址:https://www.cnblogs.com/Czc963239044/p/7088020.html
Copyright © 2020-2023  润新知