题目大意:
将给定序列分段输出,输出每段的费用计算式已经给出,就最小的输出费用。
题目分析:
首先列出转移方程:
[f[i] = max{f[j] + (sum[i] - sum[j]) ^ 2 + M}
]
转移是(n^2)的,下面考虑优化。
如果j比l优,即(f[j] + (sum[i] - sum[j]) ^ 2 + M <= fl] + (sum[i] - sum[l]) ^ 2 + M),化简得:
[S(j, l) = frac{(f[j] + sum[j]^2) - (f[l] + sum[l]^2)}{2(sum[j] - sum[l])} le sum[i]
]
观察到上式,可以使用斜率优化。
用斜率维护下凸包,更新答案即可。注意斜率优化时尽量使用乘法代替除法,避免精度问题。
code
#include<bits/stdc++.h>
using namespace std;
const int N = 500050, M = 1050;
int n, m, c[N];
int que[N];
int head, tail;
int f[N], sum[N];
inline int calc(int i, int j){
return f[j] + (sum[i] - sum[j]) * (sum[i] - sum[j]) + m;
}
inline bool slopeCheck(int i, int j, int k){
return ((f[i] + sum[i] * sum[i]) - (f[j] + sum[j] * sum[j])) * 2 * (sum[j] - sum[k]) <=
((f[j] + sum[j] * sum[j]) - (f[k] + sum[k] * sum[k])) * 2 * (sum[i] - sum[j]);
}
int main(){
freopen("h.in", "r", stdin);
while(scanf("%d%d", &n, &m)!=EOF){
memset(f, 0, sizeof f);
sum[0] = 0;
for(int i = 1; i <= n; i++) scanf("%d", &c[i]), sum[i] = sum[i - 1] + c[i];
que[head = tail = 1] = 0;
for(int i = 1; i <= n; i++){
while(head + 1 <= tail && calc(i, que[head]) >= calc(i, que[head + 1])) head++;
f[i] = calc(i, que[head]);
while(head <= tail - 1 && slopeCheck(i, que[tail], que[tail - 1])) tail--;
que[++tail] = i;
}
printf("%d
", f[n]);
}
return 0;
}