题目大意:
给出n个点,第i个点坐标是((x_i, y_i)),给出m条边,第i条边的权值是(w_i),求将图变成一颗树所需要删除边的最小权值和。
题目分析:
首先要看出坐标其实是出题人使出的障眼法,把人往计算几何引。看透问题后就知道这是求一颗最大生成树。
code:
#include<bits/stdc++.h>
using namespace std;
const int N = 100005, M = 200005;
int n, m, T;
struct node{
int a, b, c;
inline bool operator < (const node &b) const{
return c > b.c;
}
};
vector<node> edges;
int anc[N];
typedef long long ll;
ll ans1, ans2;
inline int getAnc(int x){return x == anc[x] ? x : (anc[x] = getAnc(anc[x]));}
int main(){
freopen("h.in", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(NULL), cout.tie(NULL);
cin >> T;
while(T--){
cin >> n >> m;
edges.clear(); ans1 = 0, ans2 = m;
for(int i = 1; i <= n; i++) anc[i] = i;
for(int i = 1; i <= n; i++){int x, y; cin >> x >> y;}
for(int i = 1; i <= m; i++){
int x, y, w; cin >> x >> y >> w;
edges.push_back((node){x, y, w});
ans1 += 1ll*w;
}
sort(edges.begin(), edges.end());
for(int i = 0; i < edges.size(); i++){
int f1 = getAnc(edges[i].a), f2 = getAnc(edges[i].b);
if(f1 != f2){anc[f1] = f2, ans1 -= 1ll*edges[i].c, ans2--;}
}
cout << ans2 << " " << ans1 << endl;
}
return 0;
}