题目分析
差分约束
这里做个简单介绍:形如(x_i - x_j >= d)的不等式,可以联想到我们求最短路时(d_v <= d_u + len),则上式可以变形为(x_i >= x_j + d)即连一条j->i的长度为d的边并跑最长路,dis[i]则是满足条件的最小解(因为上面等式采用的>=号,所以求出的时最小解,同理当变形为(x_j <= x_i - d) 采用<= 时求出的是最大解)。
转
差分约束
这道题也是经典的差分约束,只是要注意几个问题:
- spfa判负环 无解
- 输入矛盾条件时直接无解
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N = 1e6 + 5;
typedef long long ll;
const ll OO = 0x3f3f3f3f;
int times[N];
int n, k;
ll dis[N];
int ecnt, adj[N], go[N << 2], nxt[N << 2], len[N << 2];
bool vst[N];
inline void addEdge(int u, int v, int l){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, len[ecnt] = l;
}
inline int read(){
int i = 0, f = 1;char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') ch = getchar(), f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar())
i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(ll x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
inline bool spfa(){
static int que[N], qn;
for(int i = 1; i <= n; i++) dis[i] = -OO;
dis[0] = 0;
que[qn = 1] = 0;
vst[0] = true;
for(int ql = 1; ql <= qn; ql++){
int u = que[ql];
vst[u] = false;
times[u]++;
if(times[u] == n) return false;
for(int e = adj[u]; e; e = nxt[e]){
int v = go[e];
if(dis[v] < dis[u] + len[e]){
dis[v] = dis[u] + len[e];
if(!vst[v]) vst[v] = true, que[++qn] = v;
}
}
}
return true;
}
int main(){
n = read(), k = read();
for(int i = n; i >= 1; i--) addEdge(0, i, 1);
for(int i = 1; i <= k; i++){
int x = read(), a = read(), b = read();
switch(x){
case 1:{
if(a != b){
addEdge(a, b, 0);
addEdge(b, a, 0);
}
break;
}
case 2:{
if(a == b){
printf("-1");
return 0;
}
addEdge(a, b, 1);
break;
}
case 3:{
if(a != b)
addEdge(b, a, 0);
break;
}
case 4:{
if(a == b){
printf("-1");
return 0;
}
addEdge(b, a, 1);
break;
}
case 5:{
if(a != b)
addEdge(a, b, 0);
break;
}
default: break;
}
}
if(!spfa()){
printf("-1");
return 0;
}
ll ans = 0;
for(int i = 1; i <= n; i++){
ans += dis[i];
}
wr(ans);
return 0;
}