• poj1655 Balancing Act求树的重心


    Description

    Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the tree yields a forest: a collection of one or more trees. Define the balance of a node to be the size of the largest tree in the forest T created by deleting that node from T. 
    For example, consider the tree: 

    Deleting node 4 yields two trees whose member nodes are {5} and {1,2,3,6,7}. The larger of these two trees has five nodes, thus the balance of node 4 is five. Deleting node 1 yields a forest of three trees of equal size: {2,6}, {3,7}, and {4,5}. Each of these trees has two nodes, so the balance of node 1 is two. 

    For each input tree, calculate the node that has the minimum balance. If multiple nodes have equal balance, output the one with the lowest number. 

    Input

    The first line of input contains a single integer t (1 <= t <= 20), the number of test cases. The first line of each test case contains an integer N (1 <= N <= 20,000), the number of congruence. The next N-1 lines each contains two space-separated node numbers that are the endpoints of an edge in the tree. No edge will be listed twice, and all edges will be listed.

    Output

    For each test case, print a line containing two integers, the number of the node with minimum balance and the balance of that node.

    Sample Input

    1
    7
    2 6
    1 2
    1 4
    4 5
    3 7
    3 1
    

    Sample Output

    1 2



    这是一个模板题,是点分治的基础。我们先随便把一个结点作为根,求出siz数组,siz[i]表示以i为根的子树的大小(dfs/bfs都可以,我就用bfs了),然后去掉结点i后的最大块的大小就是max(n-siz[i],i的所有儿子中的最大siz),这样就做好了。
     1 program rrr(input,output);
     2 type
     3   etype=record
     4      t,next:longint;
     5   end;
     6 var
     7   e:array[0..40040]of etype;
     8   a,q,father,siz,f:array[0..20020]of longint;
     9   v:array[0..20020]of boolean;
    10   tt,i,j,n,x,y,cnt,h,t,ans,min:longint;
    11 function max(a,b:longint):longint;
    12 begin
    13    if a>b then exit(a) else exit(b);
    14 end;
    15 procedure add(x,y:longint);
    16 begin
    17    inc(cnt);e[cnt].t:=y;e[cnt].next:=a[x];a[x]:=cnt;
    18 end;
    19 begin
    20    assign(input,'r.in');assign(output,'r.out');reset(input);rewrite(output);
    21    readln(tt);
    22    for i:=1 to tt do
    23       begin
    24          readln(n);
    25          for j:=1 to n do a[j]:=0;cnt:=0;
    26          for j:=1 to n-1 do begin read(x,y);add(x,y);add(y,x); end;
    27          fillchar(v,sizeof(v),false);
    28          h:=0;t:=1;q[1]:=1;v[1]:=true;
    29          while h<t do
    30             begin
    31                inc(h);
    32                j:=a[q[h]];
    33                while j<>0 do
    34                   begin
    35                      if not v[e[j].t] then
    36                         begin
    37                            v[e[j].t]:=true;father[e[j].t]:=q[h];
    38                            inc(t);q[t]:=e[j].t;
    39                         end;
    40                      j:=e[j].next;
    41                   end;
    42             end;
    43          for j:=1 to n do siz[j]:=1;
    44          fillchar(f,sizeof(f),0);min:=n;
    45          for j:=n downto 2 do
    46             begin
    47                t:=max(f[q[j]],n-siz[q[j]]);
    48                if (t<min) or (t=min) and (q[j]<ans) then begin ans:=q[j];min:=t; end;
    49                inc(siz[father[q[j]]],siz[q[j]]);
    50                if siz[q[j]]>f[father[q[j]]] then f[father[q[j]]]:=siz[q[j]];
    51             end;
    52          if f[1]<=min then begin ans:=1;min:=f[1]; end;
    53          writeln(ans,' ',min);
    54       end;
    55    close(input);close(output);
    56 end.
     
  • 相关阅读:
    php递归无限分类、根据子类获取所有顶类
    PHP+Redis 有序集合实现 24 小时排行榜实时更新
    php操作redis常用方法代码示例
    Mysql 数据库默认值选 ''" 、Null和Empty String的区别
    linux查看端口占用情况
    php获取微信openid
    phpstorm 删除空行
    git常用操作命令归纳
    Redis数据类型
    渴求式加载指定字段、加载多个关联关系、嵌套的渴求式加载、带条件约束的渴求式加载
  • 原文地址:https://www.cnblogs.com/Currier/p/6506922.html
Copyright © 2020-2023  润新知