Description
小机房有棵焕狗种的树,树上有N个节点,节点标号为0到N-1,有两只虫子名叫飘狗和大吉狗,分居在两个不同的节点上。有一天,他们想爬到一个节点上去搞基,但是作为两只虫子,他们不想花费太多精力。
已知从某个节点爬到其父亲节点要花费 c 的能量(从父亲节点爬到此节点也相同),他们想找出一条花费精力最短的路,以使得搞基的时候精力旺盛,他们找到你要你设计一个程序来找到这条路,要求你告诉他们最少需要花费多少精力
Input
第一行一个n,接下来n-1行每一行有三个整数u,v, c 。表示节点 u 爬到节点 v 需要花费 c 的精力。
第n+1行有一个整数m表示有m次询问。接下来m行每一行有两个整数 u ,v 表示两只虫子所在的节点
Output
一共有m行,每一行一个整数,表示对于该次询问所得出的最短距离。
Sample Input
3
1 0 1
2 0 1
3
1 0
2 0
1 2
Sample Output
1
1
2
HINT
1<=n<=50000, 1<=m<=75000, 0<=c<=1000
Source
Solution
倍增求LCA, $O((n + m)logn)$
1 #include <bits/stdc++.h> 2 using namespace std; 3 struct edge 4 { 5 int v, w, nxt; 6 }e[100005]; 7 int fst[50005], q[50005], front, back; 8 int fa[17][50005], dis[50005], dep[50005]; 9 10 void addedge(int i, int u, int v, int w) 11 { 12 e[i] = (edge){v, w, fst[u]}, fst[u] = i; 13 } 14 15 int LCA(int u, int v) 16 { 17 if(dep[u] > dep[v]) swap(u, v); 18 for(int i = 16; ~i; i--) 19 if(dep[fa[i][v]] >= dep[u]) 20 v = fa[i][v]; 21 if(u == v) return u; 22 for(int i = 16; ~i; i--) 23 if(fa[i][u] != fa[i][v]) 24 u = fa[i][u], v = fa[i][v]; 25 return fa[0][u]; 26 } 27 28 int main() 29 { 30 int n, m, u, v, w; 31 cin >> n; 32 for(int i = 1; i < n; i++) 33 { 34 cin >> u >> v >> w; 35 addedge(i << 1, ++u, ++v, w); 36 addedge(i << 1 | 1, v, u, w); 37 } 38 q[++back] = 1, dep[1] = fa[0][1] = 1; 39 while(front != back) 40 { 41 u = q[++front]; 42 for(int i = fst[u]; i; i = e[i].nxt) 43 if(e[i].v != fa[0][u]) 44 { 45 q[++back] = e[i].v; 46 dep[e[i].v] = dep[u] + 1; 47 fa[0][e[i].v] = u; 48 dis[e[i].v] = dis[u] + e[i].w; 49 } 50 } 51 for(int i = 1; i <= 16; i++) 52 for(int j = 1; j <= n; j++) 53 fa[i][j] = fa[i - 1][fa[i - 1][j]]; 54 cin >> m; 55 while(m--) 56 { 57 cin >> u >> v, u++, v++; 58 cout << dis[u] + dis[v] - 2 * dis[LCA(u, v)] << endl; 59 } 60 return 0; 61 }
Tarjan求LCA, $O(n + m)$(写法较鬼畜)
1 #include <bits/stdc++.h> 2 using namespace std; 3 struct edge 4 { 5 int v, w, nxt; 6 }e[100005]; 7 struct query 8 { 9 int u, v, nxt; 10 }q[150005]; 11 int efst[50005], qfst[75005], fa[50005], lca[75005], dis[50005]; 12 bool vis[50005]; 13 14 void addedge(int i, int u, int v, int w) 15 { 16 e[i] = (edge){v, w, efst[u]}, efst[u] = i; 17 } 18 19 void addquery(int i, int u, int v) 20 { 21 q[i] = (query){u, v, qfst[u]}, qfst[u] = i; 22 } 23 24 int get_dis(int i) 25 { 26 return dis[q[i << 1].u] + dis[q[i << 1].v] - 2 * dis[lca[i]]; 27 } 28 29 int getfa(int x) 30 { 31 return fa[x] = x == fa[x] ? x : getfa(fa[x]); 32 } 33 34 void Tarjan(int u) 35 { 36 fa[u] = u, vis[u] = true; 37 for(int i = efst[u]; i; i = e[i].nxt) 38 if(!vis[e[i].v]) 39 { 40 dis[e[i].v] = dis[u] + e[i].w; 41 Tarjan(e[i].v); 42 fa[e[i].v] = u; 43 } 44 for(int i = qfst[u]; i; i = q[i].nxt) 45 { 46 int v = q[i].u == u ? q[i].v : q[i].u; 47 if(vis[v]) lca[i >> 1] = getfa(fa[v]); 48 } 49 } 50 51 int main() 52 { 53 int n, m, u, v, w; 54 cin >> n; 55 for(int i = 1; i < n; i++) 56 { 57 cin >> u >> v >> w; 58 addedge(i << 1, ++u, ++v, w); 59 addedge(i << 1 | 1, v, u, w); 60 } 61 cin >> m; 62 for(int i = 1; i <= m; i++) 63 { 64 cin >> u >> v; 65 addquery(i << 1, ++u, ++v); 66 addquery(i << 1 | 1, v, u); 67 } 68 Tarjan(1); 69 for(int i = 1; i <= m; i++) 70 cout << get_dis(i) << endl; 71 return 0; 72 }
树链剖分求LCA, $O(mlogn)$,我习惯把树剖维护的7个信息写到结构体里。
1 #include <bits/stdc++.h> 2 using namespace std; 3 struct edge 4 { 5 int v, w, nxt; 6 }e[100005]; 7 struct point 8 { 9 int fa, siz, son, dep, dis, dfn, top; 10 }p[50005]; 11 int ptot, fst[50005]; 12 13 void addedge(int i, int u, int v, int w) 14 { 15 e[i] = (edge){v, w, fst[u]}, fst[u] = i; 16 } 17 18 void DFS1(int u) 19 { 20 p[u].siz = 1; 21 for(int i = fst[u]; i; i = e[i].nxt) 22 if(e[i].v != p[u].fa) 23 { 24 p[e[i].v].fa = u; 25 p[e[i].v].dep = p[u].dep + 1; 26 p[e[i].v].dis = p[u].dis + e[i].w; 27 DFS1(e[i].v); 28 p[u].siz += p[e[i].v].siz; 29 if(p[e[i].v].siz > p[p[u].son].siz) 30 p[u].son = e[i].v; 31 } 32 } 33 34 void DFS2(int u, int top) 35 { 36 p[u].dfn = ++ptot, p[u].top = top; 37 if(p[u].son) DFS2(p[u].son, top); 38 for(int i = fst[u]; i; i = e[i].nxt) 39 if(e[i].v != p[u].fa && e[i].v != p[u].son) 40 DFS2(e[i].v, e[i].v); 41 } 42 43 int LCA(int u, int v) 44 { 45 while(p[u].top != p[v].top) 46 { 47 if(p[p[u].top].dep > p[p[v].top].dep) swap(u, v); 48 v = p[p[v].top].fa; 49 } 50 if(p[u].dep > p[v].dep) swap(u, v); 51 return u; 52 } 53 54 55 int main() 56 { 57 int n, m, u, v, w; 58 cin >> n; 59 for(int i = 1; i < n; i++) 60 { 61 cin >> u >> v >> w; 62 addedge(i << 1, ++u, ++v, w); 63 addedge(i << 1 | 1, v, u, w); 64 } 65 p[1].dep = 1, DFS1(1), DFS2(1, 1); 66 cin >> m; 67 while(m--) 68 { 69 cin >> u >> v, u++, v++; 70 cout << p[u].dis + p[v].dis - 2 * p[LCA(u, v)].dis << endl; 71 } 72 return 0; 73 }
LCT, $O(mlog^{2}n)$
1 #include <bits/stdc++.h> 2 using namespace std; 3 struct LCT 4 { 5 int fa, c[2], rev, key, sum; 6 int& operator [] (int i) 7 { 8 return c[i]; 9 } 10 }a[100005]; 11 int sta[100005], top; 12 13 void push_up(int k) 14 { 15 a[k].sum = a[a[k][0]].sum + a[a[k][1]].sum + a[k].key; 16 } 17 18 void push_down(int k) 19 { 20 if(a[k].rev) 21 { 22 a[a[k][0]].rev ^= 1, a[a[k][1]].rev ^= 1; 23 swap(a[k][0], a[k][1]), a[k].rev = 0; 24 } 25 } 26 27 bool isroot(int x) 28 { 29 return a[a[x].fa][0] != x && a[a[x].fa][1] != x; 30 } 31 32 void rotate(int x) 33 { 34 int y = a[x].fa, z = a[y].fa; 35 int dy = a[y][1] == x, dz = a[z][1] == y; 36 if(!isroot(y)) a[z][dz] = x; 37 a[y][dy] = a[x][dy ^ 1], a[a[x][dy ^ 1]].fa = y; 38 a[x][dy ^ 1] = y, a[y].fa = x, a[x].fa = z; 39 push_up(y); 40 } 41 42 void splay(int x) 43 { 44 sta[top = 1] = x; 45 for(int i = x; !isroot(i); i = a[i].fa) 46 sta[++top] = a[i].fa; 47 while(top) 48 push_down(sta[top--]); 49 while(!isroot(x)) 50 { 51 int y = a[x].fa, z = a[y].fa; 52 if(!isroot(y)) 53 if(a[y][1] == x ^ a[z][1] == y) rotate(x); 54 else rotate(y); 55 rotate(x); 56 } 57 push_up(x); 58 } 59 60 void access(int x) 61 { 62 for(int i = 0; x; x = a[x].fa) 63 splay(x), a[x][1] = i, i = x; 64 } 65 66 void make_root(int x) 67 { 68 access(x), splay(x), a[x].rev ^= 1; 69 } 70 71 void link(int x, int y) 72 { 73 make_root(x), a[x].fa = y; 74 } 75 76 void cut(int x, int y) 77 { 78 make_root(x), access(y), splay(y), a[y][0] = a[x].fa = 0; 79 } 80 81 int find_root(int x) 82 { 83 access(x), splay(x); 84 while(a[x][0]) 85 x = a[x][0]; 86 return x; 87 } 88 89 int main() 90 { 91 int n, m, u, v, w; 92 cin >> n; 93 for(int i = 1; i < n; i++) 94 { 95 cin >> u >> v >> w; 96 a[i + n].sum = a[i + n].key = w; 97 link(++u, i + n), link(i + n, ++v); 98 } 99 cin >> m; 100 while(m--) 101 { 102 cin >> u >> v; 103 make_root(++u), access(++v), splay(v); 104 printf("%d ", a[v].sum); 105 } 106 return 0; 107 }