• 自定义Decoder继承ByteToMessageDecoder实现解码的小案例


    ByteToMessageDecoder是一种ChannelInboundHandler,可以称为解码器,负责将byte字节流(ByteBuf)转换成一种Message,Message是应用可以自己定义的一种Java对象。

    例如应用中使用protobuf协议,则可以将byte转换为Protobuf对象。然后交给后面的Handler来处理。

    使用示例, 下面这段代码先将收到的数据按照换行符分割成一段一段的,然后将byte转换成String, 再将String转换成int, 然后把int加一后写回。

    代码:

    ServerBootstrap bootstrap = new ServerBootstrap();
    EventLoopGroup bossGroup = new NioEventLoopGroup();
    EventLoopGroup workerGroup = new NioEventLoopGroup();
    try {
        bootstrap.channel(NioServerSocketChannel.class)
                .handler(new LoggingHandler(LogLevel.DEBUG))
                .group(bossGroup, workerGroup)
                .childHandler(new ChannelInitializer<SocketChannel>() {
                    protected void initChannel(SocketChannel ch) throws Exception {
                        ch.pipeline().addLast(new LineBasedFrameDecoder(1024))
                                .addLast(new ByteToStringDecoder())
                                .addLast(new StringToIntegerDecoder())
                                .addLast(new IntegerToByteEncoder())
                                .addLast(new IntegerIncHandler());
                    }
                });
        ChannelFuture bind = bootstrap.bind(8092);
        bind.sync();
        bind.channel().closeFuture().sync();
    } finally {
        bossGroup.shutdownGracefully().sync();
        workerGroup.shutdownGracefully().sync();
    }
    

    这里的ChannelPipeline的组织结构是

    1. ByteToStringDecoder ==> 将byte转换成String的Decoder
    2. StringToIntegerDecoder ==>String转换成Integer对象的Decoder
    3. IntegerToByteEncoder ==>Integer转换成byte的Encoder
    4. IntegerIncHandler ==> 将接受到的int加一后返回

    下面来逐一分析

    ByteToStringMessageDecoder继承于ByteToMessageDecoder,并实现了ByteToMessageDecoder的
    decode(ChannelHandlerContext ctx, ByteBuf in, java.util.List out)方法。</java.lang.object>decode方法实现中要求将ByteBuf中的数据进行解码然后将解码后的对象增加到list中:

    public class ByteToStringDecoder extends ByteToMessageDecoder {
        protected void decode(ChannelHandlerContext channelHandlerContext, ByteBuf byteBuf, List<Object> list) throws Exception {
            byte[] data = new byte[byteBuf.readableBytes()];
            byteBuf.readBytes(data);
            list.add(new String(data, StandardCharsets.UTF_8));
        }
    }
    

    ByteToStringMessageDecoder继承于ByteToMessageDecoder,并实现了ByteToMessageDecoder的
    decode(ChannelHandlerContext ctx, ByteBuf in, java.util.List out)方法。
    decode方法实现中要求将ByteBuf中的数据进行解码然后将解码后的对象增加到list中

    ByteToMessageDecoder

    ByteToMessageDecoder继承了ChannelInboundHandlerAdapter所以是一个处理Inbound事件的Handler。
    其内部保存一个Cumulator用于保存待解码的ByteBuf,然后不断调用子类需要实现的抽象方法decode去取出byte数据转换处理。

    /**
         * Cumulate {@link ByteBuf}s.
         */
        public interface Cumulator {
            /**
             * Cumulate the given {@link ByteBuf}s and return the {@link ByteBuf} that holds the cumulated bytes.
             * The implementation is responsible to correctly handle the life-cycle of the given {@link ByteBuf}s and so
             * call {@link ByteBuf#release()} if a {@link ByteBuf} is fully consumed.
             */
            ByteBuf cumulate(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf in);
        }
    

    Cumulator有两种实现,MERGE_CUMULATOR和COMPOSITE_CMUMULATOR。MERGE_CUMULATOR通过memory copy的方法将in中的数据复制写入到cumulation中。COMPOSITE_CUMULATOR采取的是类似链表的方式,没有进行memory copy, 通过一种CompositeByteBuf来实现,在某些场景下会更适合。默认采用的是MERGE_CUMULATOR。

    public static final Cumulator MERGE_CUMULATOR = new Cumulator() {
            @Override
            public ByteBuf cumulate(ByteBufAllocator alloc, ByteBuf cumulation, ByteBuf in) {
                final ByteBuf buffer;
                if (cumulation.writerIndex() > cumulation.maxCapacity() - in.readableBytes()
                        || cumulation.refCnt() > 1 || cumulation.isReadOnly()) {
                    // Expand cumulation (by replace it) when either there is not more room in the buffer
                    // or if the refCnt is greater then 1 which may happen when the user use slice().retain() or
                    // duplicate().retain() or if its read-only.
                    // 如果cumulation是只读的、或者要超过capacity了,或者还有其他地方在引用, 则都通过创建一个新的byteBuf的方式来扩容ByteBuf
                    buffer = expandCumulation(alloc, cumulation, in.readableBytes());
                } else {
                    buffer = cumulation;
                }
                buffer.writeBytes(in);
                in.release();
                return buffer;
            }
        };
    

    ByteToMessageDecoder中最主要的部分在channelRead处理上

    1. 收到一个msg后先判断是否是ByteBuf类型,是的情况创建一个CodecOutputList(也是一种list)保存转码后的对象列表
    2. 如果cumulation为null则把msg设置为cumulation,否则合并到cumulation里
    3. 调用callDecode方法,尝试解码
    4. finally中如果cumulation已经读完了,就release并置为null等待gc
    5. 调用fireChannelRead将解码后的out传递给后面的Handler
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
            if (msg instanceof ByteBuf) {
                CodecOutputList out = CodecOutputList.newInstance();
                try {
                    ByteBuf data = (ByteBuf) msg;
                    first = cumulation == null;
                    if (first) {
                        cumulation = data;
                    } else {
                        cumulation = cumulator.cumulate(ctx.alloc(), cumulation, data);
                    }
                    callDecode(ctx, cumulation, out);
                } catch (DecoderException e) {
                    throw e;
                } catch (Exception e) {
                    throw new DecoderException(e);
                } finally {
                    if (cumulation != null && !cumulation.isReadable()) {
                        numReads = 0;
                        cumulation.release();
                        cumulation = null;
                    } else if (++ numReads >= discardAfterReads) {
                        // We did enough reads already try to discard some bytes so we not risk to see a OOME.
                        // See https://github.com/netty/netty/issues/4275
                        numReads = 0;
                        discardSomeReadBytes();
                    }
                    int size = out.size();
                    decodeWasNull = !out.insertSinceRecycled();
                    fireChannelRead(ctx, out, size);
                    out.recycle();
                }
            } else {
                ctx.fireChannelRead(msg);
            }
        }
    

    callDecode中不断执行抽象decode(ctx, in, out)方法直到in可读数据没有减少或当前handler被remove。

     protected void callDecode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {
            try {
                while (in.isReadable()) {
                    int outSize = out.size();
                    if (outSize > 0) {
                        fireChannelRead(ctx, out, outSize);
                        out.clear();
                       // 检查当前handler是否被remove了
                        if (ctx.isRemoved()) {
                            break;
                        }
                        outSize = 0;
                    }
    
                    int oldInputLength = in.readableBytes();
                    decodeRemovalReentryProtection(ctx, in, out);
                    // 检查当前handler是否被remove了
                    if (ctx.isRemoved()) {
                        break;
                    }
    
                    if (outSize == out.size()) {
                        if (oldInputLength == in.readableBytes()) {
                            break;
                        } else {
                            continue;
                        }
                    }
    
                    if (oldInputLength == in.readableBytes()) { // 这种情况是解码出了对象但是并没有移动in的readIndex
                        throw new DecoderException(
                                StringUtil.simpleClassName(getClass()) +
                                        ".decode() did not read anything but decoded a message.");
                    }
    
                    if (isSingleDecode()) {
                        break;
                    }
                }
            } ...
        }
    

    fireChannelRead(ctx, msgs, numElements)的处理方式是对每个解码后的消息进行fireChannelRead,交给下一个Handler处理

        static void fireChannelRead(ChannelHandlerContext ctx, List<Object> msgs, int numElements) {
            if (msgs instanceof CodecOutputList) {
                fireChannelRead(ctx, (CodecOutputList) msgs, numElements);
            } else {
                for (int i = 0; i < numElements; i++) {
                    ctx.fireChannelRead(msgs.get(i));
                }
            }
        }
        static void fireChannelRead(ChannelHandlerContext ctx, CodecOutputList msgs, int numElements) {
            for (int i = 0; i < numElements; i ++) {
                ctx.fireChannelRead(msgs.getUnsafe(i));
            }
        }
    

    以上就是ByteToMessageDecoder的主要处理部分。关于Netty,面试中会喜欢问道“粘包/拆包”问题,指的是一个消息在网络中是二进制byte流的形式传过去的,接收方如何判断一个消息是否读完、哪里是分割点等,这些可以通过Netty中提供的一些Decoder来实现,例如DelimiterBasedFrameDecoder,FixedLengthFrameDecoder, LengthFieldBasedFrameDecoder。其中最常见的应该是LengthFieldBasedFrameDecoder了,因为自定义的协议中通常会有一个协议头,里面有一个字段描述一个消息的大小长度,然后接收方就能知道消息读到什么时候是读完一个Frame了。这些解码器会在后续的文章中介绍。

  • 相关阅读:
    第 13 章 外观模式
    第 12 章 桥接模式
    第 10 章 适配器模式
    第 7 章 原型模式
    PHP的预处理语句的使用
    PHP的异常处理
    PHP中PDO函数的使用
    PHP的PDO模式数据操作
    PHP的 Final关键字、类(文件)的加载和命名空间
    PHP的魔术常量和魔术方法
  • 原文地址:https://www.cnblogs.com/Courage129/p/14237614.html
Copyright © 2020-2023  润新知