• [Dijstra] 洛谷 P2939 改造路


    题意翻译

    约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体.

    通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为0.

    请帮助约翰决定对哪些小径进行升级,使他每天从1号牧场到第N号牧场所花的时间最短

    题目描述

    Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= 50,000) trails conveniently numbered 1..M from pasture 1 all the way out to pasture N (a journey which is always possible for trail maps given in the test data). The N (1 <= N <= 10,000) pastures conveniently numbered 1..N on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures P1_i and P2_i (1 <= P1_i <= N; 1 <= P2_i <= N) and requires T_i (1 <= T_i <= 1,000,000) units of time to traverse.

    He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose K (1 <= K <= 20) trails to turn into highways, which will effectively reduce the trail's traversal time to 0. Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture 1 to N.

    TIME LIMIT: 2 seconds

    输入输出格式

    输入格式:

    * Line 1: Three space-separated integers: N, M, and K

    * Lines 2..M+1: Line i+1 describes trail i with three space-separated integers: P1_i, P2_i, and T_i

    输出格式:

    * Line 1: The length of the shortest path after revamping no more than K edges

    输入输出样例

    输入样例#1:
    4 4 1 
    1 2 10 
    2 4 10 
    1 3 1 
    3 4 100 
    
    输出样例#1:
    1 
    

    说明

    K is 1; revamp trail 3->4 to take time 0 instead of 100. The new shortest path is 1->3->4, total traversal time now 1.

    题解

    • 这题是分层图裸题

    • 搞一个k层的图,每两层间相同的点所连的边的权值为0

    • 然后就可以在这个立体的图中跑最短路

    • 然后我们发现这样或许有些浪费空间,所以建0边的过程可以省略,然后在跑dijkstra过程中可以让它到达下一层的当前这个点

    代码

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <queue>
     4 #define N 10010
     5 using namespace std;
     6 struct edge
     7 {
     8     int id,d,p;
     9     friend bool operator <(edge x,edge y) { return x.d>y.d; }
    10 };
    11 priority_queue<edge> Q;
    12 struct Edge {int to,z,from;} e[N*10];
    13 bool bz[25][N];
    14 int n,m,k,cnt,head[N],dis[25][N];
    15 void insert(int x,int y,int z) { e[++cnt].to=y,e[cnt].z=z,e[cnt].from=head[x],head[x]=cnt; }
    16 int dijkstra()
    17 {
    18     memset(bz,true,sizeof(bz)),memset(dis,63,sizeof(dis)),dis[0][1]=0,Q.push((edge){1,0,0});
    19     while (!Q.empty())
    20     {
    21         int x=Q.top().id,p=Q.top().p,d=Q.top().d; Q.pop();
    22         if (!bz[p][x]) continue;
    23         bz[p][x]=false,dis[p][x]=d;
    24         for (int i=head[x];i;i=e[i].from)
    25         {
    26             if (dis[p][x]+e[i].z<dis[p][e[i].to]) dis[p][e[i].to]=dis[p][x]+e[i].z,Q.push((edge){e[i].to,dis[p][e[i].to],p});
    27             if (p+1<=k&&dis[p][x]<dis[p+1][e[i].to]) dis[p+1][e[i].to]=dis[p][x],Q.push((edge){e[i].to,dis[p+1][e[i].to],p+1});
    28         }
    29     }
    30     return dis[k][n];
    31 }
    32 int main()
    33 {
    34     scanf ("%d%d%d",&n,&m,&k);
    35     for (int i=1,x,y,z;i<=m;i++) scanf("%d%d%d",&x,&y,&z),insert(x,y,z),insert(y,x,z);
    36     printf("%d",dijkstra());
    37 }
  • 相关阅读:
    本地MD5 SHA1 函数 的JS实现
    让用户减少学习成本——后台系统交互心得(二)(原创理论)
    样式库构建规范(转)
    基础css base.css(转)
    更贴近业务及用户——交互设计工作方式转变感言(原创理论)
    三栏布局,中间栏自适应
    你必须知道的【闭包】陷阱和案例-非常好
    css3 基础内容
    VB.Net实现登陆Ftp的方法
    .NET發送郵件功能開發
  • 原文地址:https://www.cnblogs.com/Comfortable/p/10447079.html
Copyright © 2020-2023  润新知