• 搜集到的数学分析例题(不断更新)


    设方程$sin x-xcos x=0$在$(0,+infty )$中的第$n$个解为${{x}_{n}}$ ,证明:

    $npi +frac{pi }{2}-frac{1}{npi }<{{x}_{n}}<npi +frac{pi }{2}$

    证明:设 $f(x)=sin x-xcos x$,则$f'(x) = xsin xleft{egin{array}{ll}
    > 0, & hbox{$x in {I_{2n}}$;} \
    < 0, & hbox{$x in {I_{2n + 1}}$.}
    end{array}
    ight.$

    其中${{I}_{n}}=(npi ,(n+1)pi )$,又

    $f(0)=0,f(2npi )=-2npi <0(nge 1),f((2n+1)pi )=(2n+1)pi >0$

    于是$f(x)=0$在$(0,+infty )$中的第$n$个解${{x}_{n}}in {{I}_{n}}$ ,再注意到

    $f(2npi +frac{pi }{2}-frac{1}{2npi })=cos frac{1}{2npi }-(2npi +frac{pi }{2}-frac{1}{2npi })sin frac{1}{2npi }$

       [=(2npi +frac{pi }{2}-frac{1}{2npi })cos frac{1}{2npi }cdot left( frac{1}{(2npi +frac{pi }{2}-frac{1}{2npi })}- an frac{1}{2npi } ight)]

    $<(2npi +frac{pi }{2}-frac{1}{2npi })cos frac{1}{2npi }cdot left( frac{1}{(2npi +frac{pi }{2}-frac{1}{2npi })}-frac{1}{2npi } ight)$

    $<0$

    [f(2npi +frac{pi }{2})=1>0]

    于是

    ${{x}_{2n}}in (2npi +frac{pi }{2}-frac{1}{2npi },2npi +frac{pi }{2})$

    同理,由

    $f(2npi +frac{pi }{2}-frac{1}{(2n+1)pi })=-cos frac{1}{(2n+1)pi }-left[ (2n+1)pi +frac{pi }{2}-frac{1}{(2n+1)pi } ight]sin frac{1}{(2n+1)pi }$

    [=-left[ (2n+1)pi +frac{pi }{2}-frac{1}{(2n+1)pi } ight]cos frac{1}{(2n+1)pi }cdot left( frac{1}{(2n+1)pi +frac{pi }{2}-frac{1}{(2n+1)pi }}- an frac{1}{(2n+1)pi } ight)]$>0$

    [fleft( (2n+1)pi +frac{pi }{2} ight)=-1<0]

    于是

    ${{x}_{2n+1}}in left( (2n+1)pi +frac{pi }{2}-frac{1}{(2n+1)pi },(2n+1)pi +frac{pi }{2} ight)$

    求$int_{Gamma }{{{y}^{2}}}ds$,其中$Gamma $是由$left{egin{array}{ll}
    {x^2} + {y^2} + {z^2} = {a^2} \
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} x + z = a
    end{array}
    ight.$决定

    解:由于$Gamma :$$
    left{egin{array}{ll}
    {left( {x - frac{a}{2}} ight)^2} + {y^2} + {left( {z - frac{a}{2}} ight)^2} = frac{{{a^2}}}{2} \
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} (x - frac{a}{2}) + (z - frac{a}{2}) = 0
    end{array}
    ight.$

    作变换$
    left{egin{array}{ll}
    u = x - frac{a}{2} \
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} v = y\
    w = z - frac{a}{2}
    end{array}
    ight.$

    则令$l:$$
    left{egin{array}{ll}
    {u^2} + {v^2} + {w^2} = frac{{{a^2}}}{2} \
    {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} u + w = 0
    end{array}
    ight.$

    $int_{Gamma }{{{y}^{2}}}ds=int_{l}{{{v}^{2}}}ds=int_{0}^{2pi }{frac{{{a}^{2}}}{2}}{{sin }^{2}} heta sqrt{{{left( frac{du}{d heta } ight)}^{2}}+{{left( frac{dv}{d heta } ight)}^{2}}+{{left( frac{dw}{d heta } ight)}^{2}}}d heta $

    $=int_{0}^{2pi }{frac{{{a}^{2}}}{2}{{sin }^{2}} heta cdot frac{a}{sqrt{2}}}d heta $

    $=frac{{{a}^{3}}pi }{2sqrt{2}}$

    其中$
    left{egin{array}{ll}
    u = frac{a}{2}cos heta \
    v = frac{a}{{sqrt 2 }}sin heta \
    w = - frac{a}{2}cos heta
    end{array}
    ight.$$0 le heta le 2pi $

  • 相关阅读:
    halcondraw_ellipse手动画椭圆
    halconconvexity获取凸度
    halconcount_obj获取区域集中区域的数量
    探索智能化测试技术
    华为云GaussDB数据库荣获国际CC EAL4+级别认证
    KubeEdge SIG AI发布首个分布式协同AI Benchmark调研
    数仓性能调优:如何进行函数下推
    颜值经济下,车企的必备武器
    DTT第7期直播回顾 | 低代码应用构建流程和适用场景,与你想的一样吗?
    【中秋特辑】嫦娥妹妹,你别着急~
  • 原文地址:https://www.cnblogs.com/Colgatetoothpaste/p/3674872.html
Copyright © 2020-2023  润新知