• Tiny4412 u-boot分析(3)u-boot 引导内核流程


    在u-boot中,通过bootm命令启动内核。bootm命令的作用是将内核加载到指定的内存地址,然后通过R0、R1、R2寄存器传递启动参数之后启动内核。在启动内核之前需要对环境做一些初始化工作,主要有如下几个方面:

    (1)、cpu 寄存器设置

        * R0 = 0

        * R1 = 板级 id

        * R2 = 启动参数在内存中的起始地址

    (2)、cpu 模式

        * 禁止所有中断

        * 必须为SVC(超级用户)模式

    (3)、缓存、MMU

        * 关闭 MMU

        * 指令缓存可以开启或者关闭

        * 数据缓存必须关闭并且不能包含任何脏数据

    (4)、设备

        * DMA 设备应当停止工作

    (5)、boot loader 需要跳转到内核镜像的第一条指令处

    这些需求都由 boot loader 实现,在常用的 uboot 中完成一系列的初始化后最后通过 bootm 命令加载 linux 内核。bootm 将内核镜像从各种媒介中读出,存放在指定的位置;然后设置标记列表给内核传递参数;最后跳到内核的入口点去执行。

    在分析u-boot源码之前,我们首先来分析一下u-boot中的命令格式。u-boot中每个命令都是通过 U_BOOT_CMD 宏来定义的,格式如下:

     U_BOOT_CMD(name,maxargs,repeatable,command,"usage","help")

    各项参数的意义如下:

    (1) -- name:命令的名字,注意,它不是一个字符串(不要用双引号括起来);

    (2)-- maxargs:最大的参数个数;

    (3)-- repeatable:命令是否可以重复,可重复是指运行一个命令后,下次敲回车即可再次运行;

    (4)-- command:对应的函数指针,类型为(*cmd)(struct cmd_tbl_s *, int, int, char *[]);

    (5) -- usage:简单的使用说明,这是个字符串;

    (6)-- help:较详细的使用说明,这是个字符串。

    下面就来具体分析一下bootm命令。bootm命令的源码路径为:u-boot源码路径/common/cmd_bootm.c

    我们通过

    U_BOOT_CMD(
        bootm,    CONFIG_SYS_MAXARGS,    1,    do_bootm, ...)

    可以看出bootm命令的入口函数为d_bootm,下面我们就去看一下它的庐山真面目。

    /*******************************************************************/
    /* bootm - boot application image from image in memory */
    /*******************************************************************/
    int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
    #ifdef CONFIG_ZIMAGE_BOOT
    #define LINUX_ZIMAGE_MAGIC    0x016f2818
        image_header_t    *hdr;
        ulong        addr;
       //找到内核镜像的地址
        /* find out kernel image address */
        if (argc < 2) {
            addr = load_addr;
            debug ("*  kernel: default image load address = 0x%08lx
    ",
                    load_addr);
        } else {
            addr = simple_strtoul(argv[1], NULL, 16);
        }
      //检查内核是否为zImage格式
        if (*(ulong *)(addr + 9*4) == LINUX_ZIMAGE_MAGIC) {
            u32 val;
            printf("Boot with zImage
    ");
        //将内核地址转换为物理地址
            //addr = virt_to_phys(addr);
            hdr = (image_header_t *)addr;
            hdr->ih_os = IH_OS_LINUX;
            hdr->ih_ep = ntohl(addr);
            //提取内核镜像的头信息
            memmove (&images.legacy_hdr_os_copy, hdr, sizeof(image_header_t));
        //保存头信息
            /* save pointer to image header */
            images.legacy_hdr_os = hdr;
            images.legacy_hdr_valid = 1;
            goto after_header_check;
        }
    #endif
    #ifdef CONFIG_NEEDS_MANUAL_RELOC
        static int relocated = 0;
        //重定位启动函数表
        /* relocate boot function table */
        if (!relocated) {
            int i;
            for (i = 0; i < ARRAY_SIZE(boot_os); i++)
                if (boot_os[i] != NULL)
                    boot_os[i] += gd->reloc_off;
            relocated = 1;
        }
    #endif
         //判断是否有子命令
        /* determine if we have a sub command */
        if (argc > 1) {
            char *endp;
            simple_strtoul(argv[1], &endp, 16);
            /* endp pointing to NULL means that argv[1] was just a
             * valid number, pass it along to the normal bootm processing
             *
             * If endp is ':' or '#' assume a FIT identifier so pass
             * along for normal processing.
             *
             * Right now we assume the first arg should never be '-'
             */
            if ((*endp != 0) && (*endp != ':') && (*endp != '#'))
                return do_bootm_subcommand(cmdtp, flag, argc, argv);
        }
       //获取内核相关信息
        if (bootm_start(cmdtp, flag, argc, argv))
            return 1;
        /*
         * We have reached the point of no return: we are going to
         * overwrite all exception vector code, so we cannot easily
         * recover from any failures any more...
         */
        //关闭中断
        iflag = disable_interrupts();
    #if defined(CONFIG_CMD_USB)
        /*
         * turn off USB to prevent the host controller from writing to the
         * SDRAM while Linux is booting. This could happen (at least for OHCI
         * controller), because the HCCA (Host Controller Communication Area)
         * lies within the SDRAM and the host controller writes continously to
         * this area (as busmaster!). The HccaFrameNumber is for example
         * updated every 1 ms within the HCCA structure in SDRAM! For more
         * details see the OpenHCI specification.
         */
         //关闭USB
        usb_stop();
    #endif
      //加载内核
        ret = bootm_load_os(images.os, &load_end, 1);
        if (ret < 0) {
            if (ret == BOOTM_ERR_RESET)
                do_reset (cmdtp, flag, argc, argv);
            if (ret == BOOTM_ERR_OVERLAP) {
                if (images.legacy_hdr_valid) {
                    if (image_get_type (&images.legacy_hdr_os_copy) == IH_TYPE_MULTI)
                        puts ("WARNING: legacy format multi component "
                            "image overwritten
    ");
                } else {
                    puts ("ERROR: new format image overwritten - "
                        "must RESET the board to recover
    ");
                    show_boot_progress (-113);
                    do_reset (cmdtp, flag, argc, argv);
                }
            }
            if (ret == BOOTM_ERR_UNIMPLEMENTED) {
                if (iflag)
                    enable_interrupts();
                show_boot_progress (-7);
                return 1;
            }
        }
        lmb_reserve(&images.lmb, images.os.load, (load_end - images.os.load));
        if (images.os.type == IH_TYPE_STANDALONE) {
            if (iflag)
                enable_interrupts();
            /* This may return when 'autostart' is 'no' */
            bootm_start_standalone(iflag, argc, argv);
            return 0;
        }
        show_boot_progress (8);
    #if defined(CONFIG_ZIMAGE_BOOT)
    after_header_check:
        images.os.os = hdr->ih_os;
        images.ep = image_get_ep (&images.legacy_hdr_os_copy);
    #endif
    #ifdef CONFIG_SILENT_CONSOLE
        if (images.os.os == IH_OS_LINUX)
            fixup_silent_linux();
    #endif
      //获取内核启动参数
        boot_fn = boot_os[images.os.os];
        if (boot_fn == NULL) {
            if (iflag)
                enable_interrupts();
            printf ("ERROR: booting os '%s' (%d) is not supported
    ",
                genimg_get_os_name(images.os.os), images.os.os);
            show_boot_progress (-8);
            return 1;
        }
      //内核启动前的准备
        arch_preboot_os();
      //启动内核,不返回
        boot_fn(0, argc, argv, &images);
        show_boot_progress (-9);
    #ifdef DEBUG
        puts ("
    ## Control returned to monitor - resetting...
    ");
    #endif
        do_reset (cmdtp, flag, argc, argv);
        return 1;
    }

    该函数主要的工作流程是,通过bootm_start来获取内核镜像文件的信息,然后通过bootm_load_os函数来加载内核,最后通过boot_fn来启动内核。

    首先看一下bootm_start,该函数主要进行镜像的有效性判定、校验、计算入口地址等操作,大部分工作通过 boot_get_kernel -> image_get_kernel 完成。

    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
        void        *os_hdr;
        int        ret;
        memset ((void *)&images, 0, sizeof (images));
        //读取环境变量,从环境变量中检查是否要对镜像的数据(不是镜像头)进行校验
        images.verify = getenv_yesno ("verify");
        //不做任何有意义的工作,除了定义# define lmb_reserve(lmb, base, size)  
        bootm_start_lmb();
        //获取镜像头,加载地址,长度,返回指向内存中镜像头的指针
        /* get kernel image header, start address and length */
        os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,
                &images, &images.os.image_start, &images.os.image_len);
        if (images.os.image_len == 0) {
            puts ("ERROR: can't get kernel image!
    ");
            return 1;
        }
        //根据镜像魔数获取镜像类型  
        /* get image parameters */
        switch (genimg_get_format (os_hdr)) {
        case IMAGE_FORMAT_LEGACY:
            images.os.type = image_get_type (os_hdr);//镜像类型  
            images.os.comp = image_get_comp (os_hdr);//压缩类型  
            images.os.os = image_get_os (os_hdr);//操作系统类型 
            images.os.end = image_get_image_end (os_hdr);//当前镜像的尾地址
            images.os.load = image_get_load (os_hdr);//镜像数据的载入地址 
            break;
    #if defined(CONFIG_FIT)
        case IMAGE_FORMAT_FIT:
            if (fit_image_get_type (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.type)) {
                puts ("Can't get image type!
    ");
                show_boot_progress (-109);
                return 1;
            }
            if (fit_image_get_comp (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.comp)) {
                puts ("Can't get image compression!
    ");
                show_boot_progress (-110);
                return 1;
            }
            if (fit_image_get_os (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.os)) {
                puts ("Can't get image OS!
    ");
                show_boot_progress (-111);
                return 1;
            }
            images.os.end = fit_get_end (images.fit_hdr_os);
            if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,
                        &images.os.load)) {
                puts ("Can't get image load address!
    ");
                show_boot_progress (-112);
                return 1;
            }
            break;
    #endif
        default:
            puts ("ERROR: unknown image format type!
    ");
            return 1;
        }
         //获取内核入口地址
        /* find kernel entry point */
        if (images.legacy_hdr_valid) {
            images.ep = image_get_ep (&images.legacy_hdr_os_copy);
    #if defined(CONFIG_FIT)
        } else if (images.fit_uname_os) {
            ret = fit_image_get_entry (images.fit_hdr_os,
                    images.fit_noffset_os, &images.ep);
            if (ret) {
                puts ("Can't get entry point property!
    ");
                return 1;
            }
    #endif
        } else {
            puts ("Could not find kernel entry point!
    ");
            return 1;
        }
        if (((images.os.type == IH_TYPE_KERNEL) ||
             (images.os.type == IH_TYPE_MULTI)) &&
            (images.os.os == IH_OS_LINUX)) {
            //获取虚拟磁盘
            /* find ramdisk */
            ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,
                    &images.rd_start, &images.rd_end);
            if (ret) {
                puts ("Ramdisk image is corrupt or invalid
    ");
                return 1;
            }
            
    #if defined(CONFIG_OF_LIBFDT)
             //获取设备树,设备树是linux 3.XX版本特有的
            /* find flattened device tree */
            ret = boot_get_fdt (flag, argc, argv, &images,
                        &images.ft_addr, &images.ft_len);
            if (ret) {
                puts ("Could not find a valid device tree
    ");
                return 1;
            }
            set_working_fdt_addr(images.ft_addr);
    #endif
        }
        //将内核加载地址赋值给images.os.start
        images.os.start = (ulong)os_hdr;
        //更新镜像状态
        images.state = BOOTM_STATE_START;
        return 0;
    }

    接着看一下bootm_load_os函数,它的主要工作是解压内核镜像文件,并且将它移动到内核加载地址。

    首先看一下两个重要的结构体

    //include/image.h 
    typedef struct image_header {
            uint32_t        ih_magic;       /* Image Header Magic Number    */
            uint32_t        ih_hcrc;        /* Image Header CRC Checksum    */
            uint32_t        ih_time;        /* Image Creation Timestamp     */
            uint32_t        ih_size;        /* Image Data Size              */
            uint32_t        ih_load;        /* Data  Load  Address          */
            uint32_t        ih_ep;          /* Entry Point Address          */
            uint32_t        ih_dcrc;        /* Image Data CRC Checksum      */
            uint8_t         ih_os;          /* Operating System             */
            uint8_t         ih_arch;        /* CPU architecture             */
            uint8_t         ih_type;        /* Image Type                   */
            uint8_t         ih_comp;        /* Compression Type             */
            uint8_t         ih_name[IH_NMLEN];      /* Image Name           */
    } image_header_t;
    typedef struct image_info {
            ulong           start, end;             /* start/end of blob */
            ulong           image_start, image_len; /* start of image within blob, len of image */
            ulong           load;                   /* load addr for the image */
            uint8_t         comp, type, os;         /* compression, type of image, os type */
    } image_info_t;
    static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
    {
        void        *os_hdr;
        int        ret;
        memset ((void *)&images, 0, sizeof (images));
        //读取环境变量,从环境变量中检查是否要对镜像的数据(不是镜像头)进行校验
        images.verify = getenv_yesno ("verify");
        //不做任何有意义的工作,除了定义# define lmb_reserve(lmb, base, size)  
        bootm_start_lmb();
        //获取镜像头,加载地址,长度,返回指向内存中镜像头的指针
        /* get kernel image header, start address and length */
        os_hdr = boot_get_kernel (cmdtp, flag, argc, argv,
                &images, &images.os.image_start, &images.os.image_len);
        if (images.os.image_len == 0) {
            puts ("ERROR: can't get kernel image!
    ");
            return 1;
        }
        //根据镜像魔数获取镜像类型  
        /* get image parameters */
        switch (genimg_get_format (os_hdr)) {
        case IMAGE_FORMAT_LEGACY:
            images.os.type = image_get_type (os_hdr);//镜像类型  
            images.os.comp = image_get_comp (os_hdr);//压缩类型  
            images.os.os = image_get_os (os_hdr);//操作系统类型 
            images.os.end = image_get_image_end (os_hdr);//当前镜像的尾地址
            images.os.load = image_get_load (os_hdr);//镜像数据的载入地址 
            break;
    #if defined(CONFIG_FIT)
        case IMAGE_FORMAT_FIT:
            if (fit_image_get_type (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.type)) {
                puts ("Can't get image type!
    ");
                show_boot_progress (-109);
                return 1;
            }
            if (fit_image_get_comp (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.comp)) {
                puts ("Can't get image compression!
    ");
                show_boot_progress (-110);
                return 1;
            }
            if (fit_image_get_os (images.fit_hdr_os,
                        images.fit_noffset_os, &images.os.os)) {
                puts ("Can't get image OS!
    ");
                show_boot_progress (-111);
                return 1;
            }
            images.os.end = fit_get_end (images.fit_hdr_os);
            if (fit_image_get_load (images.fit_hdr_os, images.fit_noffset_os,
                        &images.os.load)) {
                puts ("Can't get image load address!
    ");
                show_boot_progress (-112);
                return 1;
            }
            break;
    #endif
        default:
            puts ("ERROR: unknown image format type!
    ");
            return 1;
        }
         //获取内核入口地址
        /* find kernel entry point */
        if (images.legacy_hdr_valid) {
            images.ep = image_get_ep (&images.legacy_hdr_os_copy);
    #if defined(CONFIG_FIT)
        } else if (images.fit_uname_os) {
            ret = fit_image_get_entry (images.fit_hdr_os,
                    images.fit_noffset_os, &images.ep);
            if (ret) {
                puts ("Can't get entry point property!
    ");
                return 1;
            }
    #endif
        } else {
            puts ("Could not find kernel entry point!
    ");
            return 1;
        }
        if (((images.os.type == IH_TYPE_KERNEL) ||
             (images.os.type == IH_TYPE_MULTI)) &&
            (images.os.os == IH_OS_LINUX)) {
            //获取虚拟磁盘
            /* find ramdisk */
            ret = boot_get_ramdisk (argc, argv, &images, IH_INITRD_ARCH,
                    &images.rd_start, &images.rd_end);
            if (ret) {
                puts ("Ramdisk image is corrupt or invalid
    ");
                return 1;
            }
            
    #if defined(CONFIG_OF_LIBFDT)
             //获取设备树,设备树是linux 3.XX版本特有的
            /* find flattened device tree */
            ret = boot_get_fdt (flag, argc, argv, &images,
                        &images.ft_addr, &images.ft_len);
            if (ret) {
                puts ("Could not find a valid device tree
    ");
                return 1;
            }
            set_working_fdt_addr(images.ft_addr);
    #endif
        }
        //将内核加载地址赋值给images.os.start
        images.os.start = (ulong)os_hdr;
        //更新镜像状态
        images.state = BOOTM_STATE_START;
        return 0;
    }
    #define BOOTM_ERR_RESET        -1
    #define BOOTM_ERR_OVERLAP    -2
    #define BOOTM_ERR_UNIMPLEMENTED    -3
    static int bootm_load_os(image_info_t os, ulong *load_end, int boot_progress)
    {
        uint8_t comp = os.comp;//压缩格式
        ulong load = os.load;//加载地址
        ulong blob_start = os.start;//系统起始地址
        ulong blob_end = os.end;//系统结束地址
        ulong image_start = os.image_start;//镜像起始地址
        ulong image_len = os.image_len;//镜像大小
        uint unc_len = CONFIG_SYS_BOOTM_LEN;//镜像最大长度
    #if defined(CONFIG_LZMA) || defined(CONFIG_LZO)
        int ret;
    #endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */
        //获取镜像类型
        const char *type_name = genimg_get_type_name (os.type);
        switch (comp) {
        case IH_COMP_NONE://镜像没有压缩过
            if (load == blob_start) {//判断是否需要移动镜像
                printf ("   XIP %s ... ", type_name);
            } else {
                printf ("   Loading %s ... ", type_name);
                memmove_wd ((void *)load, (void *)image_start,
                        image_len, CHUNKSZ);
            }
            *load_end = load + image_len;
            puts("OK
    ");
            break;
    #ifdef CONFIG_GZIP
        case IH_COMP_GZIP://镜像使用gzip压缩
            printf ("   Uncompressing %s ... ", type_name);
            //解压镜像文件
            if (gunzip ((void *)load, unc_len,
                        (uchar *)image_start, &image_len) != 0) {
                puts ("GUNZIP: uncompress, out-of-mem or overwrite error "
                    "- must RESET board to recover
    ");
                if (boot_progress)
                    show_boot_progress (-6);
                return BOOTM_ERR_RESET;
            }
            *load_end = load + image_len;
            break;
    #endif /* CONFIG_GZIP */
    ......
        return 0;
    }

    最后看一下boot_fn函数,boot_fn的定义为

    boot_os_fn *boot_fn;

    可以看出它是一个boot_os_fn类型的函数指针。它的定义为

    //  common/cmd_bootm.c
    typedef int boot_os_fn (int flag, int argc, char * const argv[],
                            bootm_headers_t *images); /* pointers to os/initrd/fdt */
    #ifdef CONFIG_BOOTM_LINUX
    extern boot_os_fn do_bootm_linux;
    #endif
    ......

    然后boot_fn在do_bootm函数中被赋值为

    boot_fn = boot_os[images.os.os];

    boot_os是一个函数指针数组

    //  common/cmd_bootm.c
    static boot_os_fn *boot_os[] = {
    #ifdef CONFIG_BOOTM_LINUX
        [IH_OS_LINUX] = do_bootm_linux,
    #endif
    #ifdef CONFIG_BOOTM_NETBSD
        [IH_OS_NETBSD] = do_bootm_netbsd,
    #endif
    #ifdef CONFIG_LYNXKDI
        [IH_OS_LYNXOS] = do_bootm_lynxkdi,
    #endif
    #ifdef CONFIG_BOOTM_RTEMS
        [IH_OS_RTEMS] = do_bootm_rtems,
    #endif
    #if defined(CONFIG_BOOTM_OSE)
        [IH_OS_OSE] = do_bootm_ose,
    #endif
    #if defined(CONFIG_CMD_ELF)
        [IH_OS_VXWORKS] = do_bootm_vxworks,
        [IH_OS_QNX] = do_bootm_qnxelf,
    #endif
    #ifdef CONFIG_INTEGRITY
        [IH_OS_INTEGRITY] = do_bootm_integrity,
    #endif
    };

    可以看出 boot_fn 函数指针最后指向的函数是位于 arch/arm/lib/bootm.c的 do_bootm_linux,这是内核启动前最后的一个函数,该函数主要完成启动参数的初始化,并将板子设定为满足内核启动的环境。

    int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images)
    {
        //从全局变量结构体中获取串口参数
        bd_t    *bd = gd->bd;
        char    *s;
        //获取机器码
        int    machid = bd->bi_arch_number;
        //内核入口函数
        void    (*kernel_entry)(int zero, int arch, uint params);
        int    ret;
        //获取启动参数
    #ifdef CONFIG_CMDLINE_TAG
        char *commandline = getenv ("bootargs");
    #endif
        if ((flag != 0) && (flag != BOOTM_STATE_OS_GO))
            return 1;
        //从环境变量中获取机器码
        s = getenv ("machid");
        if (s) {
            machid = simple_strtoul (s, NULL, 16);
            printf ("Using machid 0x%x from environment
    ", machid);
        }
        //获取ramdisk
        ret = boot_get_ramdisk(argc, argv, images, IH_ARCH_ARM, 
                &(images->rd_start), &(images->rd_end));
        if(ret)
            printf("[err] boot_get_ramdisk
    ");
        show_boot_progress (15);
    #ifdef CONFIG_OF_LIBFDT
        if (images->ft_len)
            return bootm_linux_fdt(machid, images);
    #endif
        kernel_entry = (void (*)(int, int, uint))images->ep;
        debug ("## Transferring control to Linux (at address %08lx) ...
    ",
               (ulong) kernel_entry);
    #if defined (CONFIG_SETUP_MEMORY_TAGS) || 
        defined (CONFIG_CMDLINE_TAG) || 
        defined (CONFIG_INITRD_TAG) || 
        defined (CONFIG_SERIAL_TAG) || 
        defined (CONFIG_REVISION_TAG)
        setup_start_tag (bd);
    #ifdef CONFIG_SERIAL_TAG
        setup_serial_tag (params);
    #endif
    #ifdef CONFIG_REVISION_TAG
        setup_revision_tag (params);
    #endif
    #ifdef CONFIG_SETUP_MEMORY_TAGS
        setup_memory_tags (bd);
    #endif
    #ifdef CONFIG_CMDLINE_TAG
        setup_commandline_tag (bd, commandline);
    #endif
    #ifdef CONFIG_INITRD_TAG
        if (images->rd_start && images->rd_end)
            setup_initrd_tag (bd, images->rd_start, images->rd_end);
    #endif
        setup_end_tag(bd);
    #endif
        announce_and_cleanup();
    #ifdef CONFIG_ENABLE_MMU
        theLastJump((void *)virt_to_phys(kernel_entry), machid, bd->bi_boot_params);
    #else
        kernel_entry(0, machid, bd->bi_boot_params);
        /* does not return */
    #endif
        return 1;
    }

    kernel_entry(0, machid, r2) 

    真正将控制权交给内核, 启动内核;

    满足arm架构linux内核启动时的寄存器设置条件:第一个参数为0 ;第二个参数为板子id需与内核中的id匹配,第三个参数为启动参数地址bi_boot_params 。

    (1)首先取出环境变量bootargs,这就是要传递给内核的参数。

    (2)调用setup_XXX_tag

    static void setup_start_tag (bd_t *bd)
    {
           //将tags的首地址也就是bi_boot_params传给kernel
            params = (struct tag *) bd->bi_boot_params;
            params->hdr.tag = ATAG_CORE;
            params->hdr.size = tag_size (tag_core);
            params->u.core.flags = 0;
            params->u.core.pagesize = 0;
            params->u.core.rootdev = 0;
            params = tag_next (params);
    }
    params是一个用来存储要传给kernel的参数的静态全局变量。

     u-boot 是通过标记列表向内核传递参数,标记在源代码中定义为tag,是一个结构体,在 arch/arm/include/asm/setup.h 中定义。

    struct tag {                                                                                                                                                              
            struct tag_header hdr;
            union {
                    struct tag_core         core;
                    struct tag_mem32        mem;
                    struct tag_videotext    videotext;
                    struct tag_ramdisk      ramdisk;
                    struct tag_initrd       initrd;
                    struct tag_serialnr     serialnr;
                    struct tag_revision     revision;
                    struct tag_videolfb     videolfb;
                    struct tag_cmdline      cmdline;
                    /*
                     * Acorn specific
                     */
                    struct tag_acorn        acorn;
                    /*
                     * DC21285 specific
                     */
                    struct tag_memclk       memclk;
            } u;

    tag包括hdr和各种类型的tag_*,hdr来标志当前的tag是哪种类型的tag。setup_start_tag是初始化了第一个tag,是tag_core类型的tag。最后调用tag_next跳到第一个tag末尾,为下一个tag做准备。

    tag_next是一个宏定义,被定义在arch/arm/include/asm/setup.h中

    #define tag_next(t)     ((struct tag *)((u32 *)(t) + (t)->hdr.size))
    struct tag_header {
            u32 size;
            u32 tag;
    };

    最后调用setup_end_tag,将末尾的tag设置为ATAG_NONE,标志tag列表结束。

    static void setup_end_tag (bd_t *bd)                                                                                                                                    
    {
            params->hdr.tag = ATAG_NONE;
            params->hdr.size = 0;
    }
    u-boot将参数以tag数组的形式布局在内存的某一个地址,每个tag代表一种类型的参数,首尾tag标志开始和结束,首地址传给kernel供其解析

    通过上面的分析,我们可以尝试自己写一个bootm来引导内核(代码与4412无关,是学6410时的笔记)

    //atag.h
    #define ATAG_CORE    0x54410001
    #define ATAG_MEM    0x54410002
    #define ATAG_CMDLINE    0x54410009
    #define ATAG_NONE    0x00000000
    struct tag_header {
        unsigned int size;
        unsigned int tag;
    };
    struct tag_core {
        unsigned int flags;        
        unsigned int pagesize;
        unsigned int rootdev;
    };
    struct tag_mem32 {
        unsigned int    size;
        unsigned int    start;    
    };
    struct tag_cmdline {
        char    cmdline[1];    
    };
    struct tag {
        struct tag_header hdr;
        union {
            struct tag_core        core;
            struct tag_mem32    mem;
            struct tag_cmdline    cmdline;
        } u;
    };
    #define tag_size(type)    ((sizeof(struct tag_header) + sizeof(struct type)) >> 2)
    #define tag_next(t)    ((struct tag *)((unsigned int *)(t) + (t)->hdr.size))
    //boot.c
    #include "atag.h"
    #include "string.h"
    void (*theKernel)(int , int , unsigned int );
    #define SDRAM_KERNEL_START 0x51000000
    #define SDRAM_TAGS_START   0x50000100
    #define SDRAM_ADDR_START   0x50000000
    #define SDRAM_TOTAL_SIZE   0x16000000
    struct tag *pCurTag;
    const char *cmdline = "console=ttySAC0,115200 init=/init";
    void setup_core_tag()
    {
         pCurTag = (struct tag *)SDRAM_TAGS_START;
         
         pCurTag->hdr.tag = ATAG_CORE;
         pCurTag->hdr.size = tag_size(tag_core); 
         
         pCurTag->u.core.flags = 0;
         pCurTag->u.core.pagesize = 4096;
         pCurTag->u.core.rootdev = 0;
         
         pCurTag = tag_next(pCurTag);
    }
    void setup_mem_tag()
    {
         pCurTag->hdr.tag = ATAG_MEM;
         pCurTag->hdr.size = tag_size(tag_mem32); 
         
         pCurTag->u.mem.start = SDRAM_ADDR_START;
         pCurTag->u.mem.size = SDRAM_TOTAL_SIZE;
         
         pCurTag = tag_next(pCurTag);
    }
    void setup_cmdline_tag()
    {
         int linelen = strlen(cmdline);
         
         pCurTag->hdr.tag = ATAG_CMDLINE;
         pCurTag->hdr.size = (sizeof(struct tag_header)+linelen+1+4)>>2;
         
         strcpy(pCurTag->u.cmdline.cmdline,cmdline);
         
         pCurTag = tag_next(pCurTag);
    }
    void setup_end_tag()
    {
        pCurTag->hdr.tag = ATAG_NONE;
        pCurTag->hdr.size = 0;
    }
    void boot_linux(){
        
        //1.获取Linux启动地址
        theKernel = (void (*)(int , int , unsigned int ))SDRAM_KERNEL_START;
        printf("huo qu linux qi dong di zhi");
        //2.设置启动参数
        //2.1.设置核心启动参数
        setup_core_tag();
        //2.2.设置内存参数
        setup_mem_tag();
        //2.3.设置命令行参数
        setup_cmdline_tag();
        //2.4.设置结束标志
        setup_end_tag();
        
        //4.启动Linux内核
        theKernel(0,1626,SDRAM_TAGS_START);
        printf("qi dong linux nei he");
        
        }
  • 相关阅读:
    如何使用Flannel搭建跨主机互联的容器网络
    移动端——touch事件
    Javascript 模块化指北
    vue重构--H5--canvas实现粒子时钟
    redux-saga框架使用详解及Demo教程
    前端代码编写规范
    探秘JS的异步单线程
    POJ 3714 Raid 近期对点题解
    EditText把回车键变成搜索
    Swift语言概览
  • 原文地址:https://www.cnblogs.com/CoderTian/p/6006400.html
Copyright © 2020-2023  润新知