• 20180625小测


    T1:


    最优解显然是选择一个区间。我们枚举右端点,显然左端点单调不减。
    写个分治就能AC啦(话说为什么我分析出单调性后连分治都想不到)。
    考场44分代码:

     1 #pragma GCC optimize("Ofast")
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cctype>
     5 typedef long long int lli;
     6 using namespace std;
     7 const int maxe=1e6+1e2,maxn=1e5,maxl=20;
     8 // I am a sb and I can't solve any problem, although all over the world has solved T1.
     9 // Compilation technology is well developed, we don't need to support it.
    10 
    11 int n,m;
    12 
    13 struct RMQ {
    14     struct Array {
    15         int dat[maxe][maxl];
    16         inline int* operator () (const int &i,const int &j) { // i is kind , j is pos .
    17             return dat[n*(i-1)+j];
    18         }
    19     }arr;
    20     int Log[maxn];
    21 
    22     inline void init() {
    23         for(int i=2;i<=n;i++) Log[i] = Log[i>>1] + 1;
    24         for(int i=1;i<=m;i++) for(int k=1;k<=Log[n];k++) for(int j=1;j<=n;j++)
    25             arr(i,j)[k] = max( arr(i,j)[k-1] , arr(i,j+(1<<(k-1)))[k-1] );
    26     }
    27     inline int query(int k,int l,int r) {
    28         const int Lo = Log[r-l+1];
    29         return max( arr(k,l)[Lo] , arr(k,r-(1<<Lo)+1)[Lo] );
    30     }
    31 }RMQ;
    32 
    33 lli su[maxn],f[maxn],ans;
    34 
    35 inline char nextchar() {
    36     static const int BS = 1 << 21;
    37     static char buf[BS],*st,*ed;
    38     if( st == ed ) ed = buf + fread(st=buf,1,BS,stdin);
    39     return st == ed ? -1 : *st++;
    40 }
    41 inline int getint() {
    42     int ret = 0 , ch;
    43     while( !isdigit(ch=nextchar()) ) ;
    44     do ret = ret * 10 + ch - '0'; while( isdigit(ch=nextchar()) );
    45     return ret;
    46 }
    47 int main() {
    48     n = getint() , m = getint();
    49     for(int i=2;i<=n;i++) su[i] = su[i-1] + getint();
    50     for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) *RMQ.arr(j,i) = getint();
    51     RMQ.init();
    52     for(int r=n,l=n;r;r--) {
    53         l = min( l , r );
    54         for(int j=l;j;j--) {
    55             f[j] = su[j] - su[r];
    56             for(int k=1;k<=m;k++) f[j] += RMQ.query(k,j,r);
    57             if( f[j] >= f[l] ) l = j;
    58         }
    59         ans = max( ans , f[l] );
    60     }
    61     printf("%lld
    ",ans);
    62     return 0;
    63 }
    View Code

    正解代码:

     1 #pragma GCC optimize("Ofast")
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cctype>
     5 typedef long long int lli;
     6 using namespace std;
     7 const int maxe=1e6+1e5+1e2,maxn=1e5+1e2,maxl=20;
     8 const lli inf=0x3f3f3f3f3f3f3f3fll;
     9 
    10 int n,m;
    11 
    12 struct RMQ {
    13     struct Array {
    14         int dat[maxe][maxl];
    15         inline int* operator () (const int &i,const int &j) { // i is kind , j is pos .
    16             return dat[n*(i-1)+j];
    17         }
    18     }arr;
    19     int Log[maxn];
    20 
    21     inline void init() {
    22         for(int i=2;i<=n;i++) Log[i] = Log[i>>1] + 1;
    23         for(int i=1;i<=m;i++) for(int k=1;k<=Log[n];k++) for(int j=1;j<=n;j++)
    24             arr(i,j)[k] = max( arr(i,j)[k-1] , arr(i,j+(1<<(k-1)))[k-1] );
    25     }
    26     inline int query(int k,int l,int r) {
    27         const int Lo = Log[r-l+1];
    28         return max( arr(k,l)[Lo] , arr(k,r-(1<<Lo)+1)[Lo] );
    29     }
    30 }RMQ;
    31 
    32 lli su[maxn],f[maxn],ans;
    33 
    34 inline lli calc(int ll,int rr) {
    35     if( ll > rr ) return -inf;
    36     lli ret = su[ll] - su[rr];
    37     for(int i=1;i<=m;i++) ret += RMQ.query(i,ll,rr);
    38     return ret;
    39 }
    40 inline void solve(int l_l,int l_r,int r_l,int r_r) {
    41     if( r_l == r_r ) {
    42         for(int i=l_l;i<=l_r;i++) ans = max( ans , calc(i,r_l) );
    43         return;
    44     } const int r_mid = ( r_l + r_r ) >> 1;
    45     int l_mid = l_l; f[l_l] = calc(l_l,r_mid);
    46     for(int i=l_l;i<=l_r;i++) if( ( f[i] = calc(i,r_mid) ) > f[l_mid] ) l_mid = i;
    47     ans = max( ans , f[l_mid] );
    48     solve(l_l,l_mid,r_l,r_mid) , solve(l_mid,l_r,r_mid+1,r_r);
    49 }
    50 
    51 inline char nextchar() {
    52     static const int BS = 1 << 21;
    53     static char buf[BS],*st,*ed;
    54     if( st == ed ) ed = buf + fread(st=buf,1,BS,stdin);
    55     return st == ed ? -1 : *st++;
    56 }
    57 inline int getint() {
    58     int ret = 0 , ch;
    59     while( !isdigit(ch=nextchar()) ) ;
    60     do ret = ret * 10 + ch - '0'; while( isdigit(ch=nextchar()) );
    61     return ret;
    62 }
    63 
    64 int main() {
    65     n = getint() , m = getint();
    66     for(int i=2;i<=n;i++) su[i] = su[i-1] + getint();
    67     for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) *RMQ.arr(j,i) = getint();
    68     RMQ.init() , solve(1,n,1,n);
    69     printf("%lld
    ",ans);
    70     return 0;
    71 }
    View Code


    T2:


    暴力高斯消元大家都会。
    考虑我们把图按照与原点的曼哈顿距离分层,显然i层的变量只跟i-1层和i+1层有关。
    我们能从外层向内层带入,用i,i+1,i+2三层的方程,高斯消元,用第i层表示第i+1层的方程。
    然后在继续迭代(i-1,i,i+1)层。后来写这个代码的时候我已经十分混乱了......
    考场45分代码:

     1 #pragma GCC optimize("Ofast")
     2 #include<cstdio>
     3 #include<algorithm>
     4 typedef long long int lli;
     5 const int maxn=31,maxe=3e3+1e1;
     6 const int mod=1e9+7;
     7 
     8 inline int sub(const int &x,const int &y) {
     9     const int ret = x - y;
    10     return ret < 0 ? ret + mod : ret;
    11 }
    12 inline int mul(const int &x,const int &y) {
    13     return (lli) x * y % mod;
    14 }
    15 inline void adde(int &dst,const int &x) {
    16     if( ( dst += x ) >= mod ) dst -= mod;
    17 }
    18 inline void sube(int &dst,const int &x) {
    19     if( ( dst -= x ) < 0 ) dst += mod;
    20 }
    21 inline void mule(int &dst,const int &x) {
    22     dst = (lli) dst * x % mod;
    23 }
    24 inline int fastpow(int base,int tim) {
    25     int ret = 1;
    26     while(tim) {
    27         if( tim & 1 ) mule(ret,base);
    28         if( tim >>= 1 ) mule(base,base);
    29     }
    30     return ret;
    31 }
    32 
    33 int dat[maxe][maxe];
    34 int n,r;
    35 
    36 struct Array {
    37     int dat[maxe];
    38     inline int& operator () (int x,int y) {
    39         x += r , y += r;
    40         return dat[x*(r*2+1)+y];
    41     }
    42 }id;
    43 
    44 inline int gid(int x,int y) {
    45     if( x < -r || x > r || y < -r || y > r ) return n;
    46     return id(x,y);
    47 }
    48 
    49 
    50 inline bool inside(int x,int y) {
    51     return x * x + y * y <= r * r;
    52 }
    53 
    54 inline void gauss() {
    55     for(int i=1,pos;i<=n;i++) {
    56         pos = -1;
    57         for(int j=i;j<=n;j++) if( dat[j][i] ) { pos = j; break; }
    58         if( !~pos ) continue;
    59         if( pos != i ) {
    60             for(int k=1;k<=n+1;k++) std::swap(dat[pos][k],dat[i][k]);
    61             pos = i;
    62         }
    63         const int inv = fastpow(dat[i][i],mod-2);
    64         for(int k=1;k<=n+1;k++) mule(dat[i][k],inv);
    65         for(int j=1;j<=n;j++) if( i != j && dat[j][i] ) {
    66             const int m = dat[j][i];
    67             for(int k=1;k<=n+1;k++) sube(dat[j][k],mul(m,dat[i][k]));
    68         }
    69     }
    70 }
    71 
    72 const int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
    73 int in[4],su;
    74 
    75 inline void build() {
    76     for(int i=-r;i<=r;i++) for(int j=-r;j<=r;j++) if( inside(i,j) ) id(i,j) = ++n;
    77     ++n; for(int i=-r;i<=r;i++) for(int j=-r;j<=r;j++) if( !inside(i,j) ) id(i,j) = n;
    78     for(int i=-r;i<=r;i++) for(int j=-r;j<=r;j++) if( inside(i,j) ) {
    79         for(int k=0;k<4;k++) {
    80             const int sx = i + dx[k] , sy = j + dy[k];
    81             adde(dat[id(i,j)][gid(sx,sy)],sub(0,in[k]));
    82         }
    83         dat[id(i,j)][id(i,j)] = 1 , dat[id(i,j)][n+1] = 1;
    84     }
    85     dat[n][n] = 1;
    86 }
    87 
    88 int main() {
    89     scanf("%d",&r);
    90     for(int i=0;i<4;i++) scanf("%d",in+i) , adde(su,in[i]);
    91     const int inv = fastpow(su,mod-2);
    92     for(int i=0;i<4;i++) mule(in[i],inv);
    93     build() , gauss() , printf("%d
    ",dat[id(0,0)][n+1]);
    94     return 0;
    95 }
    View Code

    正解代码:

      1 #pragma GCC optimize("Ofast")
      2 #include<iostream>
      3 #include<cstdio>
      4 #include<cstring>
      5 #include<algorithm>
      6 #include<vector>
      7 #include<cstdlib>
      8 #define debug cout
      9 using namespace std;
     10 typedef long long int lli;
     11 const int maxn=1e2+1e1;
     12 const int mod=1e9+7;
     13 const int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
     14 
     15 inline int sub(const int &x,const int &y) {
     16     const int ret = x - y;
     17     return ret < 0 ? ret + mod : ret;
     18 }
     19 inline int mul(const int &x,const int &y) {
     20     return (lli) x * y % mod;
     21 }
     22 inline void adde(int &dst,const int &x) {
     23     if( ( dst += x ) >= mod ) dst -= mod;
     24 }
     25 inline void sube(int &dst,const int &x) {
     26     if( ( dst -= x ) < 0 ) dst += mod;
     27 }
     28 inline void mule(int &dst,const int &x) {
     29     dst = (lli) dst * x % mod;
     30 }
     31 inline int fastpow(int base,int tim) {
     32     int ret = 1;
     33     while(tim) {
     34         if( tim & 1 ) mule(ret,base);
     35         if( tim >>= 1 ) mule(base,base);
     36     }
     37     return ret;
     38 }
     39 
     40 int dat[maxn<<3][maxn<<3];
     41 bool isOutside[maxn<<3];
     42 int at[maxn<<3];
     43 
     44 inline void gauss(int n,int es) { // n is number of xs , es is number of equations .
     45     for(int i=1,pos,used=0;i<=n;i++) if( isOutside[i] ) {
     46         pos = -1;
     47         for(int j=++used;j<=es;j++) if( dat[j][i] ) { pos = j; break; }
     48         if( !~pos ) continue;
     49         if( pos != used ) {
     50             for(int k=0;k<=n;k++) std::swap(dat[pos][k],dat[used][k]);
     51             pos = used;
     52         } at[i] = used;
     53         const int inv = fastpow(dat[used][i],mod-2);
     54         for(int k=0;k<=n;k++) mule(dat[used][k],inv);
     55         for(int j=1;j<=es;j++) if( used != j && dat[j][i] ) {
     56             const int m = dat[j][i];
     57             for(int k=0;k<=n;k++) sube(dat[j][k],mul(m,dat[used][k]));
     58         }
     59     }
     60 }
     61 
     62 struct NamePool {
     63     int stk[maxn<<3],top;
     64     inline void deleteName(int x) { stk[++top] = x; }
     65     inline int newName() { return stk[top--]; }
     66     NamePool() { for(int i=(maxn<<2)-1;i;i--) deleteName(i); }
     67     inline int usedSize() { return (maxn<<2) - 1 - top; }
     68 }np;
     69 
     70 int id[maxn][maxn];
     71 int tmp[maxn][maxn][maxn<<3]; // temp equations .
     72 int in[4],su,r;
     73 const int FS = 800;
     74 
     75 struct Point { int x,y; };
     76 vector<Point> ps[maxn<<2];
     77 
     78 inline void newLevel(const vector<Point> &ps) {
     79     for(unsigned i=0;i<ps.size();i++) id[ps[i].x][ps[i].y] = np.newName();
     80 }
     81 inline void removeLevel(const vector<Point> &ps) {
     82     for(unsigned i=ps.size()-1;~i;i--) np.deleteName(id[ps[i].x][ps[i].y]);
     83 }
     84 inline int dis(int x,int y) {
     85     return abs(r-x) + abs(r-y);
     86 }
     87 inline void buildLevel(const vector<Point> &ps) { // build this level , and copy tmp equations .
     88     memset(dat,0,sizeof(dat));
     89     int cnt = 0;
     90     for(unsigned i=0;i<ps.size();i++) {
     91         const int cc = id[ps[i].x][ps[i].y]; ++cnt;
     92         for(int j=0;j<4;j++) {
     93             const int tx = ps[i].x + dx[j] , ty = ps[i].y + dy[j];
     94             if( tx < 0 || ty < 0 ) continue;
     95             if( dis(tx,ty) > dis(ps[i].x,ps[i].y) ) {
     96                 const int m = in[j];
     97                 adde(dat[cnt][0],mul(m,tmp[tx][ty][0]));
     98                 for(int j=1;j<=FS;j++) sube(dat[cnt][j],mul(m,tmp[tx][ty][j]));
     99             } else adde(dat[cnt][id[tx][ty]],sub(0,in[j]));
    100         }
    101         adde(dat[cnt][cc],1) , adde(dat[cnt][0],1);
    102     }
    103 }
    104 inline void markLevel(const vector<Point> &ps,const bool &v) {
    105     for(unsigned i=0;i<ps.size();i++) isOutside[id[ps[i].x][ps[i].y]] = v;
    106 }
    107 inline void storeLevel(const vector<Point> ps,int n) {
    108     for(unsigned i=0;i<ps.size();i++) {
    109         const int pos = at[id[ps[i].x][ps[i].y]];
    110         tmp[ps[i].x][ps[i].y][0] = dat[pos][0];
    111         for(int j=1;j<=n;j++) if( j != id[ps[i].x][ps[i].y] )
    112             tmp[ps[i].x][ps[i].y][j] = sub(0,dat[pos][j]);
    113     }
    114 }
    115 inline void trans(int lev) { // level is new outside level .
    116     newLevel(ps[lev-1]) , buildLevel(ps[lev]) , markLevel(ps[lev],1);
    117     gauss(FS,ps[lev].size()) , storeLevel(ps[lev],FS);
    118     markLevel(ps[lev],0) , removeLevel(ps[lev]);
    119 }
    120 inline int calcCent() {
    121     int sul = 1 , sur = 1;
    122     for(int i=0;i<4;i++) {
    123         const int tx = r + dx[i] , ty = r + dy[i];
    124         sube(sul,mul(tmp[tx][ty][id[r][r]],in[i])) , adde(sur,mul(tmp[tx][ty][0],in[i]));
    125     }
    126     return mul(sur,fastpow(sul,mod-2));
    127 }
    128 
    129 inline bool inside(int x,int y) {
    130     return (r-x)*(r-x) + (r-y)*(r-y) <= r * r;
    131 }
    132 
    133 int main() {
    134     scanf("%d",&r);
    135     for(int i=0;i<4;i++) scanf("%d",in+i) , adde(su,in[i]);
    136     const int inv = fastpow(su,mod-2);
    137     for(int i=0;i<4;i++) mule(in[i],inv);
    138     for(int i=0;i<=r<<1;i++)
    139         for(int j=0;j<=r<<1;j++)
    140             if( inside(i,j) ) ps[dis(i,j)].push_back((Point){i,j});
    141     for(int i=r<<1,fir=1;i;i--) if( ps[i].size() ) {
    142         if(fir) newLevel(ps[i]) , fir = 0;
    143         trans(i);
    144     }
    145     printf("%d
    ",calcCent());
    146     return 0;
    147 }
    View Code


    T3:


    找规矩神仙题,我只会dfs,还是WA的。
    题解:

    考场30分代码:

     1 #include<cstdio>
     2 #include<utility>
     3 #include<queue>
     4 #include<cctype>
     5 #define bool unsigned char
     6 typedef std::pair<int,int> pii;
     7 using namespace std;
     8 const int maxn=5e2+1e1;
     9 
    10 bool in[maxn][maxn];
    11 int n,m,ans;
    12 queue<pii> q;
    13 
    14 inline void update(int x,int y) {
    15     for(int i=1;i<=n;i++) if( in[y][i] && !in[i][x] ) in[i][x] = 1 , q.push(make_pair(i,x));
    16 }
    17 
    18 inline char nextchar() {
    19     static const int BS = 1 << 20;
    20     static char buf[BS],*st,*ed;
    21     if( st == ed ) ed = buf + fread(st=buf,1,BS,stdin);
    22     return st == ed ? -1 : *st++;
    23 }
    24 inline int getint() {
    25     int ret = 0 , ch;
    26     while( !isdigit(ch=nextchar()) ) ;
    27     do ret = ret * 10 + ch - '0'; while( isdigit(ch=nextchar()) );
    28     return ret;
    29 }
    30 
    31 int main() {
    32     n = getint() , m = getint();
    33     for(int i=1,a,b;i<=m;i++) a = getint() , b = getint() , in[a][b] = 1 , q.push(make_pair(a,b));
    34     while( q.size() ) update(q.front().first,q.front().second) , q.pop();
    35     for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) ans += in[i][j];
    36     printf("%d
    ",ans);
    37     return 0;
    38 }
    View Code

    正解代码:

     1 #include<cstdio>
     2 #include<cstring>
     3 typedef long long int lli;
     4 const int maxn=1e5+1e2;
     5 
     6 int s[maxn],t[maxn<<1],nxt[maxn<<1],mrk[maxn];
     7 bool vis[maxn],fail;
     8 int cnt[3],ecnt;
     9 
    10 inline void addedge(int from,int to) {
    11     static int cnt;
    12     t[++cnt] = to , nxt[cnt] = s[from] , s[from] = cnt;
    13 }
    14 inline void dfs(int pos,int col) {
    15     static const int ne[]={1,2,0},pr[]={2,0,1};
    16     if( vis[pos] ) return void(fail |= col != mrk[pos]);
    17     vis[pos] = 1 , ++cnt[mrk[pos]=col];
    18     for(int at=s[pos];at;at=nxt[at]) ++ecnt , dfs(t[at],(at&1)?ne[col]:pr[col]);
    19 }
    20 
    21 int main() {
    22     static int n,m;
    23     static lli ans;
    24     scanf("%d%d",&n,&m);
    25     for(int i=1,a,b;i<=m;i++) scanf("%d%d",&a,&b) , addedge(a,b) , addedge(b,a);
    26     for(int i=1;i<=n;i++) if( !vis[i] ) {
    27         memset(cnt,0,sizeof(cnt)) , ecnt = fail = 0 , dfs(i,0);
    28         if(fail) ans += (lli) ( cnt[0] + cnt[1] + cnt[2] ) * ( cnt[0] + cnt[1] + cnt[2] );
    29         else if( !cnt[0] || !cnt[1] || !cnt[2] ) ans += ecnt >> 1;
    30         else ans += (lli) cnt[0] * cnt[1] + (lli) cnt[1] * cnt[2] + (lli) cnt[2] * cnt[0];
    31     }
    32     printf("%lld
    ",ans);
    33     return 0;
    34 }
    View Code


    为什么活着本身,要顾忌那么多的事情?
    感觉活下去,好累......

  • 相关阅读:
    函数中的不定长参数研究 *and**
    copy()与直接=赋值的区别
    python的位运算符
    python的list相关知识
    hadoop报错:hdfs.DFSClient: Exception in createBlockOutputStream
    转载计算机的潜意识的文章:机器学习的入门级经典读物
    完全分布式hadoop2.5.0安装 VMware下虚拟机centos6.4安装1主两从hadoop
    PE结构总导航
    利用函数指针绕过断点
    为什么Fun函数能够执行
  • 原文地址:https://www.cnblogs.com/Cmd2001/p/9226532.html
Copyright © 2020-2023  润新知