• 北京集训:20180313


    考试对于蒟蒻而言简直就是灾难......

    T1:


    又是一道组合数学神题。
    显然这张图会由n个环组成,我们考虑在每个环内分别选>=1个点,最后点总方案的乘积就是在这些环中选k个点的答案。
    怎么计算呢?我们可以f[i][j]表示前i个环,选j个点的方案数。转移就是f[i][j]=f[i-1][j-p]*C(siz[i],p)(0<=p<=siz[i])。
    答案就是f[len][k]了。
    这样大力背包就有50分。
    显然这个转移是一个卷积。如果我们用NTT去优化的话就有65分了。
    我呢?写了NTT结果提交没注释freopen,爆零了啊......
    正解就是这样,只不过优化了一下顺序:
    如果我们采用启发式NTT合并的话,可以把复杂度降低到nlog^2n。
    (其实我也想到把这些生成函数卷积起来而不是背包,只是没想到启发式QAQ)
    大力背包代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define debug cout
    typedef long long int lli;
    using namespace std;
    const int maxn=5.3e4,maxe=2.6e3,lim=52501;
    const int mod=998244353;
    
    lli fac[maxn],inv[maxn];
    int in[maxn];
    int dfn[maxn],low[maxn],bel[maxn],siz[maxn],dd,iid;
    int stk[maxn],ins[maxn],vis[maxn],top;
    lli f[2][maxn];
    int n,full;
    
    inline lli fastpow(lli base,int tim) {
        lli ret = 1;
        while( tim ) {
            if( tim & 1 ) ret = ret * base % mod;
            if( tim >>= 1 ) base = base * base % mod;
        }
        return ret % mod;
    }
    inline void sieve() {
        *fac = 1;
        for(int i=1;i<=lim;i++) fac[i] = fac[i-1] * i % mod;
        inv[lim] = fastpow(fac[lim],mod-2);
        for(int i=lim;i;i--) inv[i-1] = inv[i] * i % mod;
    }
    inline lli c(int n,int m) {
        return fac[n] * inv[m] % mod * inv[n-m] % mod;
    }
    inline void tarjan(int pos) {
        vis[pos] = 1 , low[pos] = dfn[pos] = ++dd;
        stk[++top] = pos , ins[pos] = 1;
        if( !vis[in[pos]] ) {
            tarjan(in[pos]) ,
            low[pos] = min( low[pos] , low[in[pos]] );
        } else if( ins[in[pos]] ) low[pos] = min( low[pos] , dfn[in[pos]] );
        if( low[pos] == dfn[pos] ) {
            ++iid;
            do {
                const int x = stk[top--]; ins[x] = 0;
                bel[x] = iid , ++siz[iid];
            } while( ins[pos] );
        }
    }
    
    inline lli calc() { // There can't be any chain !
        memset(f,0,sizeof(f)) , **f = 1;
        int cur = 0 , fs = 0;
        for(int i=1;i<=iid;i++) {
            fs += siz[i] , cur ^= 1;
            memset(f[cur],0,sizeof(f[cur]));
            for(int j=1;j<=fs&&j<=full;j++) // j means full size .
                for(int k=1;k<=siz[i]&&k<=j;k++) { // k means person in ring[i]
                    f[cur][j] += f[cur^1][j-k] * c(siz[i],k) % mod , f[cur][j] %= mod;
                }
            for(int j=0;j<i;j++) f[cur][j] = 0;
        }
        return f[cur][full];
    }
    
    inline void reset() {
        memset(vis,0,sizeof(vis)) , memset(siz,0,sizeof(siz)) ,
        dd = iid = 0;
    }
    
    int main() {
        static int T;
        scanf("%d",&T) , sieve();
        while(T--) {
            scanf("%d%d",&n,&full) , reset();
            for(int i=1;i<=n;i++) scanf("%d",in+i);
            for(int i=1;i<=n;i++) if( !vis[i] ) tarjan(i);
            printf("%lld
    ",calc()*fastpow(c(n,full),mod-2)%mod);
        }
        return 0;
    }
    View Code

    爆零NTT代码:

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #define debug cout
      6 typedef long long int lli;
      7 using namespace std;
      8 const int maxn=5.3e4,lim=52501;
      9 const int mod=998244353,g=3;
     10 
     11 lli fac[maxn],inv[maxn];
     12 int in[maxn];
     13 int dfn[maxn],low[maxn],bel[maxn],siz[maxn],dd,iid;
     14 int stk[maxn],ins[maxn],vis[maxn],top;
     15 lli f[2][maxn<<4],tmp[maxn<<4];
     16 int n,full;
     17 
     18 inline lli fastpow(lli base,int tim) {
     19     lli ret = 1;
     20     while( tim ) {
     21         if( tim & 1 ) ret = ret * base % mod;
     22         if( tim >>= 1 ) base = base * base % mod;
     23     }
     24     return ret % mod;
     25 }
     26 inline void sieve() {
     27     *fac = 1;
     28     for(int i=1;i<=lim;i++) fac[i] = fac[i-1] * i % mod;
     29     inv[lim] = fastpow(fac[lim],mod-2);
     30     for(int i=lim;i;i--) inv[i-1] = inv[i] * i % mod;
     31 }
     32 inline lli c(int n,int m) {
     33     return fac[n] * inv[m] % mod * inv[n-m] % mod;
     34 }
     35 inline void tarjan(int pos) {
     36     vis[pos] = 1 , low[pos] = dfn[pos] = ++dd;
     37     stk[++top] = pos , ins[pos] = 1;
     38     if( !vis[in[pos]] ) {
     39         tarjan(in[pos]) ,
     40         low[pos] = min( low[pos] , low[in[pos]] );
     41     } else if( ins[in[pos]] ) low[pos] = min( low[pos] , dfn[in[pos]] );
     42     if( low[pos] == dfn[pos] ) {
     43         ++iid;
     44         do {
     45             const int x = stk[top--]; ins[x] = 0;
     46             bel[x] = iid , ++siz[iid];
     47         } while( ins[pos] );
     48     }
     49 }
     50 
     51 inline void NTT(lli* dst,int n,int ope) {
     52     for(int i=0,j=0;i<n;i++) {
     53         if( i < j ) swap( dst[i] , dst[j] );
     54         for(int t=n>>1;(j^=t)<t;t>>=1) ;
     55     }
     56     for(int len=2;len<=n;len<<=1) {
     57         const int h = len >> 1;
     58         lli per = fastpow(g,mod/(len));
     59         if( !~ope ) per = fastpow(per,mod-2);
     60         for(int st=0;st<n;st+=len) {
     61             lli w = 1;
     62             for(int pos=0;pos<h;pos++) {
     63                 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod;
     64                 dst[st+pos] = ( u + v ) % mod ,
     65                 dst[st+pos+h] = ( u - v + mod ) % mod ,
     66                 w = w * per % mod;
     67             }
     68         }
     69     }
     70     if( !~ope ) {
     71         const lli mul = fastpow(n,mod-2);
     72         for(int i=0;i<n;i++) dst[i] = dst[i] * mul % mod;
     73     }
     74 }
     75 inline void trans(lli* dst,lli* sou1,lli* sou2,int full,int n) {
     76     int len;
     77     for(len=1;len<=((full+n)<<1);len<<=1);
     78     len <<= 1;
     79     for(int i=0;i<len;i++) sou2[i] = 0;
     80     for(int i=1;i<=min(full,n);i++) sou2[i] = c(full,i);
     81     NTT(sou1,len,1) , NTT(sou2,len,1);
     82     for(int i=0;i<len;i++) dst[i] = sou1[i] * sou2[i] % mod;
     83     NTT(dst,len,-1);
     84 }
     85 inline lli calc() { // There can't be any chain !
     86     memset(f,0,sizeof(f)) , **f = 1;
     87     int cur = 0 , fs = 0;
     88     for(int i=1;i<=iid;i++) {
     89         fs += siz[i] , cur ^= 1;
     90         memset(f[cur],0,sizeof(f[cur]));
     91         trans(f[cur],f[cur^1],tmp,siz[i],min(full,fs));
     92         for(int j=0;j<i;j++) f[cur][j] = 0;
     93     }
     94     return f[cur][full];
     95 }
     96 
     97 inline void reset() {
     98     memset(vis,0,sizeof(vis)) , memset(siz,0,sizeof(siz)) ,
     99     dd = iid = 0;
    100 }
    101 
    102 int main() {
    103     static int T;
    104     scanf("%d",&T) , sieve();
    105     while(T--) {
    106         scanf("%d%d",&n,&full) , reset();
    107         for(int i=1;i<=n;i++) scanf("%d",in+i);
    108         for(int i=1;i<=n;i++) if( !vis[i] ) tarjan(i);
    109         printf("%lld
    ",calc()*fastpow(c(n,full),mod-2)%mod);
    110     }
    111     return 0;
    112 }
    View Code

    正解代码:

      1 #pragma GCC optimize("Ofast,no-stack-protector")
      2 #pragma GCC optimize("-funsafe-loop-optimizations")
      3 #pragma GCC optimize("-funroll-loops")
      4 #pragma GCC optimize("-fwhole-program")
      5 #include<iostream>
      6 #include<cstdio>
      7 #include<cstring>
      8 #include<algorithm>
      9 #include<vector>
     10 #include<queue>
     11 #define debug cout
     12 typedef long long int lli;
     13 using namespace std;
     14 const int maxn=152510,maxl=524288,lim=152501;
     15 const int mod=998244353,g=3;
     16 
     17 int in[maxn],vis[maxn],siz[maxn],len;
     18 lli fac[maxn],inv[maxn],ta[maxl],tb[maxl],tm[maxl];
     19 vector<lli> vec[maxn];
     20 priority_queue<pair<int,int> > pq;
     21 int n;
     22 
     23 inline int findring(int pos,int ret) {
     24     if( vis[pos] ) return ret;
     25     vis[pos] = 1;
     26     return findring(in[pos],ret+1);
     27 }
     28 inline lli fastpow(lli base,int tim) {
     29     lli ret = 1;
     30     while (tim) {
     31         if ( tim & 1 ) ret = ret * base % mod;
     32         if( tim >>= 1 ) base = base * base % mod;
     33     }
     34     return ret;
     35 }
     36 inline void NTT(lli* dst,int n,int tpe) {
     37     for(int i=0,j=0;i<n;i++) {
     38         if( i < j ) swap(dst[i],dst[j]);
     39         for(int t=n>>1;(j^=t)<t;t>>=1) ;
     40     }
     41     for(int len=2;len<=n;len<<=1) {
     42         const int h = len >> 1;
     43         lli per = fastpow(g,mod/len);
     44         if( !~tpe ) per = fastpow(per,mod-2);
     45         for(int st=0;st<n;st+=len) {
     46             lli w = 1;
     47             for(int pos=0;pos<h;pos++) {
     48                 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod;
     49                 dst[st+pos] = ( u + v ) % mod ,
     50                 dst[st+pos+h] = ( u - v + mod ) % mod ,
     51                 w = w * per % mod;
     52             }
     53         }
     54     }
     55     if( !~tpe ) {
     56         const lli mul = fastpow(n,mod-2);
     57         for(int i=0;i<n;i++) dst[i] = dst[i] * mul % mod;
     58     }
     59 }
     60 inline void sieve() {
     61     *fac = 1;
     62     for(int i=1;i<=lim;i++) fac[i] = fac[i-1] * i % mod;
     63     inv[lim] = fastpow(fac[lim],mod-2);
     64     for(int i=lim;i;i--) inv[i-1] = inv[i] * i % mod;
     65 }
     66 inline lli c(int n,int m) {
     67     return fac[n] * inv[m] % mod * inv[n-m] % mod;
     68 }
     69 inline void merge(vector<lli> &a,vector<lli> &b) { // merge a and b into a .
     70     int len,ns=a.size()+b.size()-1;
     71     for(len=1;len<=ns;len<<=1) ;
     72     for(int i=0;i<len;i++) ta[i] = tb[i] = tm[i] = 0;
     73     for(unsigned i=0;i<a.size();i++) ta[i] = a[i];
     74     for(unsigned i=0;i<b.size();i++) tb[i] = b[i];
     75     NTT(ta,len,1) , NTT(tb,len,1);
     76     for(int i=0;i<len;i++) tm[i] = ta[i] * tb[i] % mod;
     77     NTT(tm,len,-1);
     78     a.resize(ns);
     79     for(int i=0;i<ns;i++) a[i] = tm[i];
     80 }
     81 inline int getans() {
     82     while( pq.size() != 1 ) {
     83         const int a = pq.top().second; pq.pop();
     84         const int b = pq.top().second; pq.pop();
     85         merge(vec[a],vec[b]);
     86         pq.push(make_pair(-(vec[a].size()-1),a));
     87     }
     88     int ret = pq.top().second; pq.pop();
     89     return ret;
     90 }
     91 inline void pre() {
     92     for(int i=1;i<=len;i++) {
     93         vec[i].resize(siz[i]+1);
     94         for(int j=1;j<=siz[i];j++) vec[i][j] = c(siz[i],j);
     95         pq.push(make_pair(-(vec[i].size()-1),i));
     96     }
     97 }
     98 inline void getring() {
     99     memset(vis,0,sizeof(vis)) , len = 0;
    100     for(int i=1;i<=n;i++) if( !vis[i] ) siz[++len] = findring(i,0);
    101 }
    102 
    103 int main() {
    104     static int T,full,p;
    105     scanf("%d",&T) , sieve();
    106     while(T--) {
    107         scanf("%d%d",&n,&full);
    108         for(int i=1;i<=n;i++) scanf("%d",in+i);
    109         getring() , pre();
    110         p = getans();
    111         printf("%lld
    ",vec[p][full]*fastpow(c(n,full),mod-2)%mod);
    112     }
    113     return 0;
    114 }
    View Code


    T2:


    m只有6,显然状压。
    转移方式相同,显然矩乘。
    答案统计一个前缀和的东西,显然还是矩乘,这样就是矩乘套矩乘了......
    然后发现次数很大,不会做,怎么办?
    手打了一个高精,又写了一个用欧拉定理降次的程序,排不上。
    发现欧拉定理并不适用,就把高精交上去了,拿了60分。
    后来发现如果大力取模phi(p)*2降次的话有65分的......
    正解是这样的东西,然而并不会......


    考场60分代码:

      1 #include<bits/stdc++.h>
      2 #define debug cout
      3 typedef long long int lli;
      4 using namespace std;
      5 const int maxn=70,maxl=10,maxe=2.6e3+1e2;
      6 const int mod=998244353,phi=mod-1;
      7 
      8 int lim;
      9 struct Matrix {
     10     lli dat[maxn][maxn];
     11     Matrix(int tpe=0) {
     12         memset(dat,0,sizeof(dat));
     13         if( tpe ) for(int i=0;i<lim;i++) dat[i][i] = 1;
     14     }
     15     friend Matrix operator * (const Matrix &a,const Matrix &b) {
     16         Matrix ret;
     17         for(int i=0;i<lim;i++)
     18             for(int j=0;j<lim;j++)
     19                 for(int k=0;k<lim;k++)
     20                     ( ret.dat[i][j] += a.dat[i][k] * b.dat[k][j] % mod ) %= mod;
     21         return ret;
     22     }
     23     friend Matrix operator + (const Matrix &a,const Matrix &b) {
     24         Matrix ret;
     25         for(int i=0;i<lim;i++)
     26             for(int j=0;j<lim;j++)
     27                 ret.dat[i][j] = ( a.dat[i][j] + b.dat[i][j] ) % mod;
     28         return ret;
     29     }
     30     inline void print() {
     31         for(int i=0;i<lim;i++) {
     32             for(int j=0;j<lim;j++) debug<<setw(3)<<dat[i][j]<<" ";
     33             debug<<endl;
     34         }
     35     }
     36 }mtrans,mini;
     37 
     38 struct MatrixMatrix {
     39     Matrix dat[2][2];
     40     friend MatrixMatrix operator * (const MatrixMatrix &a,const MatrixMatrix &b) {
     41         MatrixMatrix ret;
     42         for(int i=0;i<2;i++)
     43             for(int j=0;j<2;j++)
     44                 for(int k=0;k<2;k++)
     45                     ret.dat[i][j] = ret.dat[i][j] + a.dat[i][k] * b.dat[k][j];
     46         return ret;
     47     }
     48 }ini,trans,ansl,ansr;
     49 
     50 struct BigInt {
     51     int dat[maxe],len;
     52     inline void in(const char* s) { // s starts from 0 .
     53         len = strlen(s);
     54         for(int i=0;i<len;i++) dat[i] = s[len-i-1] - '0';
     55     }
     56     inline bool andone() {
     57         return dat[0] & 1;
     58     }
     59     inline void shr() {
     60         for(int i=len-1;~i;i--) {
     61             dat[i-1] += 10 * ( dat[i] & 1 ) ,
     62             dat[i] >>= 1;
     63         }
     64         while( len && !dat[len-1] ) --len;
     65     }
     66     inline bool iszero() {
     67         return len == 0;
     68     }
     69     inline void minusone() {
     70         --dat[0];
     71         for(int i=0;i<len;i++)
     72             if( dat[i] < 0 ) dat[i] += 10 , dat[i+1]--;
     73         while( len && !dat[len-1] ) --len;
     74     }
     75 }l,r;
     76 
     77 bool vis[maxl],nxt[maxl];
     78 int s1,s2,m;
     79 lli ans;
     80 
     81 inline int zip() {
     82     int ret = 0;
     83     for(int i=0;i<6;i++)
     84         ret += ( (int) nxt[i] << i );
     85     return ret;
     86 }
     87 inline void unzip(int sta) {
     88     for(int i=0;i<m;i++)
     89         vis[i] = ( sta >> i ) & 1;
     90 }
     91 inline void dfs(int pos,int sou,lli ways) {
     92     if( pos == m ) {
     93         ( mtrans.dat[sou][zip()] += ways ) %= mod;
     94         return;
     95     }
     96     if( vis[pos] ) return dfs(pos+1,sou,ways);
     97     else {
     98         vis[pos] = nxt[pos] = 1;
     99         dfs(pos+1,sou,ways*s1%mod);
    100         vis[pos] = nxt[pos] = 0;
    101         if( pos != m-1 && !vis[pos+1] ) {
    102             vis[pos] = vis[pos+1] = 1;
    103             dfs(pos+1,sou,ways*s2%mod);
    104             vis[pos] = vis[pos+1] = 0;
    105         }
    106     }
    107 }
    108 
    109 inline MatrixMatrix fastpow(MatrixMatrix base,BigInt tim) {
    110     MatrixMatrix ret = ini;
    111     while(!tim.iszero()) {
    112         if( tim.andone() ) ret = ret * base;
    113         base = base * base , tim.shr();
    114     }
    115     return ret;
    116 }
    117 
    118 inline void init() {
    119     lim = 1 << m;
    120     for(int i=0;i<lim;i++) {
    121         unzip(i);
    122         dfs(0,i,1);
    123     }
    124     mini.dat[0][0] = 1;
    125     ini.dat[0][0] = ini.dat[0][1] = mini;
    126     trans.dat[0][0] = trans.dat[0][1] = mtrans , trans.dat[1][1] = Matrix(1);
    127 }
    128 
    129 inline void readin() {
    130     static char buf[5002];
    131     scanf("%s",buf) , l.in(buf);
    132     scanf("%s",buf) , r.in(buf);
    133     l.minusone();
    134 }
    135 
    136 int main() {
    137     readin();
    138     scanf("%d%d%d",&m,&s1,&s2);
    139     init();
    140     ansl = fastpow(trans,l) , ansr = fastpow(trans,r);
    141     ans = ( ansr.dat[0][1].dat[0][0] - ansl.dat[0][1].dat[0][0] + mod ) % mod;
    142     printf("%lld
    ",ans);
    143     return 0;
    144 }
    View Code

    本蒟蒻后来去补了正解,无非就是特征多项式优化矩乘。
    我们可以先大力NTT+高斯消元求出矩阵的特征多项式,然后求出期望次数对多项式取模得到的多项式。
    预处理转移矩阵的次方,之后的问题就很简单了。
    然而由于OJ过于卡常并不能AC,最多85分......
    即使是优化取模并加了达夫机器也无力回天......
    80分的正常向版本:

      1 #pragma GCC optimize(3)
      2 #include<bits/stdc++.h>
      3 #define debug cout
      4 typedef long long int lli;
      5 using namespace std;
      6 const int maxn=70,maxl=10,maxe=2.6e3+1e2;
      7 const int mod=998244353,g=3;
      8  
      9  inline lli fastpow(lli base,int tim) {
     10      lli ret = 1;
     11      while( tim ) {
     12          if( tim & 1 ) ret = ret * base % mod;
     13          if( tim >>= 1 ) base = base * base % mod;
     14      }
     15      return ret;
     16 }
     17 int lim;
     18 struct Matrix {
     19     lli dat[maxn<<1][maxn<<1];
     20     Matrix(int tpe=0) {
     21         memset(dat,0,sizeof(dat));
     22         if( tpe ) for(int i=0;i<lim;i++) dat[i][i] = 1;
     23     }
     24     friend Matrix operator * (const Matrix &a,const Matrix &b) {
     25         Matrix ret;
     26         for(int i=0;i<lim<<1;i++)
     27             for(int j=0;j<lim<<1;j++)
     28                 for(int k=0;k<lim<<1;k++)
     29                     ( ret.dat[i][j] += a.dat[i][k] * b.dat[k][j] % mod ) %= mod;
     30         return ret;
     31     }
     32     friend Matrix operator + (const Matrix &a,const Matrix &b) {
     33         Matrix ret;
     34         for(int i=0;i<lim<<1;i++)
     35             for(int j=0;j<lim<<1;j++)
     36                 ret.dat[i][j] = ( a.dat[i][j] + b.dat[i][j] ) % mod;
     37         return ret;
     38     }
     39     friend Matrix operator * (const Matrix &a,const lli &b) {
     40         Matrix ret;
     41         for(int i=0;i<lim<<1;i++)
     42             for(int j=0;j<lim<<1;j++)
     43                 ret.dat[i][j] = a.dat[i][j] * b % mod;
     44         return ret;
     45     }
     46     inline lli pointval(const lli &x) {
     47         const int len = lim << 1;
     48         lli ret = 1;
     49         for(int i=0;i<len;i++) dat[i][i] = ( dat[i][i] - x % mod + mod ) % mod;
     50         //debug<<"x = "<<x<<"muled = "<<endl;print();
     51         for(int i=0;i<len;i++) {
     52             int pos = -1;
     53             for(int j=i;j<len;j++) if( dat[j][i] ) {
     54                 pos = j;
     55                 break;
     56             }
     57             if( !~pos ) return 0;
     58             if( pos != i ) {
     59                 ret = mod - ret;
     60                 for(int k=0;k<len;k++) swap( dat[i][k] , dat[pos][k] );
     61                 pos = i;
     62             }
     63             const lli mul = fastpow(dat[i][i],mod-2);
     64             ret = ret * dat[i][i] % mod;
     65             for(int k=0;k<len;k++) dat[i][k] = dat[i][k] * mul % mod;
     66             for(int j=0;j<len;j++) if( dat[j][i] && j != i ) {
     67                 const lli mul = dat[j][i];
     68                 for(int k=0;k<len;k++) dat[j][k] = ( dat[j][k] - dat[i][k] * mul % mod  + mod ) % mod;
     69             }
     70         }
     71         //debug<<"ret = "<<ret<<endl;
     72         return ret;
     73     }
     74     inline void print() {
     75         for(int i=0;i<lim<<1;i++) {
     76             for(int j=0;j<lim<<1;j++) debug<<setw(3)<<dat[i][j]<<" ";
     77             debug<<endl;
     78         }
     79     }
     80 }mtrans,mini,trans,ini,tmp,pows[maxn<<1];
     81 
     82 struct Poly {
     83     lli dat[maxn<<2];
     84     Poly(int tpe = 0) {
     85         memset(dat,0,sizeof(dat));
     86         *dat = tpe;
     87     }
     88     lli& operator [] (const int &x) {
     89         return dat[x];
     90     }
     91     const lli& operator [] (const int &x) const {
     92         return dat[x];
     93     }
     94     friend Poly operator * (const Poly &a,const Poly &b) {
     95         Poly ret;
     96         for(int i=0;i<lim<<1;i++)
     97             for(int j=0;j<lim<<1;j++)
     98                 ( ret[i+j] += a[i] * b[j] % mod ) %= mod;
     99         //debug<<"muted ret = "; ret.print();
    100         return ret;
    101     }
    102     friend Poly operator % (const Poly &a,const Poly &b) {
    103         Poly ret = a;
    104         //debug<<"inital ret = "; ret.print();
    105         //debug<<"inital mod = "; b.print();
    106         int lst = lim << 1;
    107         while( lst && !b[lst] ) --lst;
    108         //debug<<"lst = "<<lst<<endl;
    109         if( !lst ) throw "Moding Zero";
    110         for(int i=(lim<<2)-1;i>=lst;i--) if( ret[i] ) {
    111             //debug<<"i = "<<i<<endl;
    112             const int mul = ret[i] * fastpow(b[lst],mod-2) % mod;
    113             for(int j=0;j<=lst;j++) {
    114                 //debug<<"j = "<<j<<endl;
    115                 ret[i-j] = ( ret[i-j] - b[lst-j] * mul % mod + mod ) % mod;
    116                 //debug<<"ret[i-j] = "<<ret[i-j]<<endl;
    117             }
    118         }
    119         //debug<<"at last ret = "; ret.print();
    120         return ret;
    121     }
    122     inline void print() const {
    123         for(int i=0;i<lim<<2;i++) debug<<dat[i]<<" "; debug<<endl;
    124     }
    125 }pini,ptrans;
    126 
    127 inline void NTT(lli* dst,int n,int ope) {
    128     for(int i=0,j=0;i<n;i++) {
    129         if( i < j ) swap( dst[i] , dst[j] );
    130         for(int t=n>>1;(j^=t)<t;t>>=1) ;
    131     }
    132     for(int len=2;len<=n;len<<=1) {
    133         const int h = len >> 1;
    134         lli per = fastpow(g,mod/(len));
    135         if( !~ope ) per = fastpow(per,mod-2);
    136         for(int st=0;st<n;st+=len) {
    137             lli w = 1;
    138             for(int pos=0;pos<h;pos++) {
    139                 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod;
    140                 dst[st+pos] = ( u + v ) % mod ,
    141                 dst[st+pos+h] = ( u - v + mod ) % mod ,
    142                 w = w * per % mod;
    143             }
    144         }
    145     }
    146     if( !~ope ) {
    147         const lli mul = fastpow(n,mod-2);
    148         for(int i=0;i<n;i++) dst[i] = dst[i] * mul % mod;
    149     }
    150 }
    151 
    152 inline void initpoly() {
    153     int len = lim << 2;
    154     //trans.print();
    155     for(int i=0;i<len;i++) {
    156         tmp = trans;
    157         ptrans[i] = tmp.pointval(fastpow(g,(mod/len)*i));
    158     }
    159     NTT(ptrans.dat,len,-1);
    160     //ptrans.print();
    161     pini[1] = 1;
    162 }
    163 
    164 struct BigInt {
    165     int dat[maxe],len;
    166     inline void in(const char* s) { // s starts from 0 .
    167         len = strlen(s);
    168         for(int i=0;i<len;i++) dat[i] = s[len-i-1] - '0';
    169     }
    170     inline bool andone() {
    171         return dat[0] & 1;
    172     }
    173     inline void shr() {
    174         for(int i=len-1;~i;i--) {
    175             dat[i-1] += 10 * ( dat[i] & 1 ) ,
    176             dat[i] >>= 1;
    177         }
    178         while( len && !dat[len-1] ) --len;
    179     }
    180     inline bool iszero() {
    181         return len == 0;
    182     }
    183     inline void minusone() {
    184         --dat[0];
    185         for(int i=0;i<len;i++)
    186             if( dat[i] < 0 ) dat[i] += 10 , dat[i+1]--;
    187         while( len && !dat[len-1] ) --len;
    188     }
    189 }l,r;
    190  
    191 bool vis[maxl],nxt[maxl];
    192 int s1,s2,m;
    193 lli ans;
    194  
    195 inline int zip() {
    196     int ret = 0;
    197     for(int i=0;i<6;i++)
    198         ret += ( (int) nxt[i] << i );
    199     return ret;
    200 }
    201 inline void unzip(int sta) {
    202     for(int i=0;i<m;i++)
    203         vis[i] = ( sta >> i ) & 1;
    204 }
    205 inline void dfs(int pos,int sou,lli ways) {
    206     if( pos == m ) {
    207         ( mtrans.dat[sou][zip()] += ways ) %= mod;
    208         return;
    209     }
    210     if( vis[pos] ) return dfs(pos+1,sou,ways);
    211     else {
    212         vis[pos] = nxt[pos] = 1;
    213         dfs(pos+1,sou,ways*s1%mod);
    214         vis[pos] = nxt[pos] = 0;
    215         if( pos != m-1 && !vis[pos+1] ) {
    216             vis[pos] = vis[pos+1] = 1;
    217             dfs(pos+1,sou,ways*s2%mod);
    218             vis[pos] = vis[pos+1] = 0;
    219         }
    220     }
    221 }
    222  
    223 inline Poly fastpow(Poly base,BigInt tim,Poly mod) {
    224     Poly ret(1);
    225     //debug<<"in fastpow inital ret = "; ret.print();
    226     while( !tim.iszero() ) {
    227         if( tim.andone() ) ret = ret * base % mod;
    228         tim.shr();
    229         if( !tim.iszero() ) base = base * base % mod;
    230     }
    231     return ret;
    232 }
    233 
    234 inline void merge(Matrix &dst,const Matrix &sou,int sx,int sy) {
    235     for(int i=0;i<lim;i++)
    236         for(int j=0;j<lim;j++)
    237             dst.dat[i+sx][j+sy] = sou.dat[i][j];
    238 } 
    239 inline void init() {
    240     lim = 1 << m;
    241     for(int i=0;i<lim;i++) {
    242         unzip(i);
    243         dfs(0,i,1);
    244     }
    245     mini.dat[0][0] = 1;
    246     merge(ini,mini,0,0) , merge(ini,mini,0,lim);
    247     merge(trans,mtrans,0,0) , merge(trans,mtrans,0,lim) , merge(trans,Matrix(1),lim,lim);
    248 }
    249  
    250  inline lli calc(BigInt n) {
    251      Matrix ret;
    252      Poly mul = fastpow(pini,n,ptrans);
    253      for(int i=0;i<lim<<1;i++) {
    254         if( mul[i] ) ret = ( ret + pows[i] * mul[i] ); 
    255     }
    256     return ret.dat[0][lim];
    257 }
    258 inline void readin() {
    259     static char buf[5002];
    260     scanf("%s",buf) , l.in(buf);
    261     scanf("%s",buf) , r.in(buf);
    262     l.minusone();
    263 }
    264  
    265 int main() {
    266     readin();
    267     scanf("%d%d%d",&m,&s1,&s2);
    268     init();
    269     //debug<<"trans = "<<endl;trans.print();
    270     initpoly();
    271     pows[0] = ini;
    272     for(int i=1;i<lim<<1;i++) pows[i] = pows[i-1] * trans;
    273     ans = ( calc(r) - calc(l) + mod ) % mod;
    274     printf("%lld
    ",ans);
    275     return 0;
    276 }
    View Code

    最终的85分代码:

      1 #pragma GCC optimize(3)
      2 #pragma GCC optimize("Ofast,no-stack-protector")
      3 #pragma GCC optimize("-funsafe-loop-optimizations")
      4 #pragma GCC optimize("-funroll-loops")
      5 #pragma GCC optimize("-fwhole-program")
      6 #include<cstdio>
      7 #include<cstring>
      8 #include<algorithm>
      9 using namespace std;
     10 typedef long long int lli;
     11 const int maxn=70,maxl=10,maxe=2.6e3+1e2;
     12 const int mod=998244353,g=3;
     13 
     14 inline void duff_mul(lli* dst,const lli* sou,lli mul,unsigned len) {
     15     unsigned loop = len >> 6;
     16     switch( len & 63 ) {
     17         case 0 : do { *dst++ += mul * *sou++ % mod;
     18         case 63 :  *dst++ += mul * *sou++ % mod;
     19         case 62 :  *dst++ += mul * *sou++ % mod;
     20         case 61 :  *dst++ += mul * *sou++ % mod;
     21         case 60 :  *dst++ += mul * *sou++ % mod;
     22         case 59 :  *dst++ += mul * *sou++ % mod;
     23         case 58 :  *dst++ += mul * *sou++ % mod;
     24         case 57 :  *dst++ += mul * *sou++ % mod;
     25         case 56 :  *dst++ += mul * *sou++ % mod;
     26         case 55 :  *dst++ += mul * *sou++ % mod;
     27         case 54 :  *dst++ += mul * *sou++ % mod;
     28         case 53 :  *dst++ += mul * *sou++ % mod;
     29         case 52 :  *dst++ += mul * *sou++ % mod;
     30         case 51 :  *dst++ += mul * *sou++ % mod;
     31         case 50 :  *dst++ += mul * *sou++ % mod;
     32         case 49 :  *dst++ += mul * *sou++ % mod;
     33         case 48 :  *dst++ += mul * *sou++ % mod;
     34         case 47 :  *dst++ += mul * *sou++ % mod;
     35         case 46 :  *dst++ += mul * *sou++ % mod;
     36         case 45 :  *dst++ += mul * *sou++ % mod;
     37         case 44 :  *dst++ += mul * *sou++ % mod;
     38         case 43 :  *dst++ += mul * *sou++ % mod;
     39         case 42 :  *dst++ += mul * *sou++ % mod;
     40         case 41 :  *dst++ += mul * *sou++ % mod;
     41         case 40 :  *dst++ += mul * *sou++ % mod;
     42         case 39 :  *dst++ += mul * *sou++ % mod;
     43         case 38 :  *dst++ += mul * *sou++ % mod;
     44         case 37 :  *dst++ += mul * *sou++ % mod;
     45         case 36 :  *dst++ += mul * *sou++ % mod;
     46         case 35 :  *dst++ += mul * *sou++ % mod;
     47         case 34 :  *dst++ += mul * *sou++ % mod;
     48         case 33 :  *dst++ += mul * *sou++ % mod;
     49         case 32 :  *dst++ += mul * *sou++ % mod;
     50         case 31 :  *dst++ += mul * *sou++ % mod;
     51         case 30 :  *dst++ += mul * *sou++ % mod;
     52         case 29 :  *dst++ += mul * *sou++ % mod;
     53         case 28 :  *dst++ += mul * *sou++ % mod;
     54         case 27 :  *dst++ += mul * *sou++ % mod;
     55         case 26 :  *dst++ += mul * *sou++ % mod;
     56         case 25 :  *dst++ += mul * *sou++ % mod;
     57         case 24 :  *dst++ += mul * *sou++ % mod;
     58         case 23 :  *dst++ += mul * *sou++ % mod;
     59         case 22 :  *dst++ += mul * *sou++ % mod;
     60         case 21 :  *dst++ += mul * *sou++ % mod;
     61         case 20 :  *dst++ += mul * *sou++ % mod;
     62         case 19 :  *dst++ += mul * *sou++ % mod;
     63         case 18 :  *dst++ += mul * *sou++ % mod;
     64         case 17 :  *dst++ += mul * *sou++ % mod;
     65         case 16 :  *dst++ += mul * *sou++ % mod;
     66         case 15 :  *dst++ += mul * *sou++ % mod;
     67         case 14 :  *dst++ += mul * *sou++ % mod;
     68         case 13 :  *dst++ += mul * *sou++ % mod;
     69         case 12 :  *dst++ += mul * *sou++ % mod;
     70         case 11 :  *dst++ += mul * *sou++ % mod;
     71         case 10 :  *dst++ += mul * *sou++ % mod;
     72         case 9 :  *dst++ += mul * *sou++ % mod;
     73         case 8 :  *dst++ += mul * *sou++ % mod;
     74         case 7 :  *dst++ += mul * *sou++ % mod;
     75         case 6 :  *dst++ += mul * *sou++ % mod;
     76         case 5 :  *dst++ += mul * *sou++ % mod;
     77         case 4 :  *dst++ += mul * *sou++ % mod;
     78         case 3 :  *dst++ += mul * *sou++ % mod;
     79         case 2 :  *dst++ += mul * *sou++ % mod;
     80         case 1 :  *dst++ += mul * *sou++ % mod; } while( loop-- ) ;
     81     }
     82 }
     83 
     84 inline lli fastpow(lli base,int tim) {
     85      lli ret = 1;
     86      while( tim ) {
     87          if( tim & 1 ) ret = ret * base % mod;
     88          if( tim >>= 1 ) base = base * base % mod;
     89      }
     90      return ret;
     91 }
     92 int lim;
     93 struct Matrix {
     94     lli dat[maxn<<1][maxn<<1];
     95     Matrix(int tpe=0) {
     96         memset(dat,0,sizeof(dat));
     97         if( tpe ) for(int i=0;i<lim;i++) dat[i][i] = 1;
     98     }
     99     friend Matrix operator * (const Matrix &a,const Matrix &b) {
    100         Matrix ret;
    101         /*for(int i=0;i<lim<<1;i++)
    102             for(int j=0;j<lim<<1;j++) {
    103                 for(int k=0;k<lim<<1;k++)
    104                     //( ret.dat[i][j] += a.dat[i][k] * b.dat[k][j] % mod ) %= mod;
    105                     ret.dat[i][j] += a.dat[i][k] * b.dat[k][j] % mod;
    106                 ret.dat[i][j] %= mod;
    107             }*/
    108         for(int i=0;i<lim<<1;i++) {
    109             for(int k=0;k<lim<<1;k++) {
    110                 const lli t = a.dat[i][k];
    111                 if( t ) {
    112                     /*for(int j=0;j<lim<<1;j++)
    113                         ret.dat[i][j] += t * b.dat[k][j] % mod;*/
    114                     duff_mul(ret.dat[i],b.dat[k],t,lim<<1);
    115                 }
    116             }
    117         }
    118         for(int i=0;i<lim<<1;i++)
    119             for(int j=0;j<lim<<1;j++)
    120                 ret.dat[i][j] %= mod;
    121         return ret;
    122     }
    123     friend Matrix operator + (const Matrix &a,const Matrix &b) {
    124         Matrix ret;
    125         for(int i=0;i<lim<<1;i++)
    126             for(int j=0;j<lim<<1;j++)
    127                 ret.dat[i][j] = ( a.dat[i][j] + b.dat[i][j] ) % mod;
    128         return ret;
    129     }
    130     friend Matrix operator * (const Matrix &a,const lli &b) {
    131         Matrix ret;
    132         for(int i=0;i<lim<<1;i++)
    133             for(int j=0;j<lim<<1;j++)
    134                 ret.dat[i][j] = a.dat[i][j] * b % mod;
    135         return ret;
    136     }
    137     inline lli pointval(const lli &x) {
    138         const int len = lim << 1;
    139         lli ret = 1;
    140         for(int i=0;i<len;i++) dat[i][i] = ( dat[i][i] - x % mod + mod ) % mod;
    141         for(int i=0;i<len;i++) {
    142             int pos = -1;
    143             for(int j=i;j<len;j++) if( dat[j][i] ) {
    144                 pos = j;
    145                 break;
    146             }
    147             if( !~pos ) return 0;
    148             if( pos != i ) {
    149                 ret = mod - ret;
    150                 for(int k=0;k<len;k++) swap( dat[i][k] , dat[pos][k] );
    151                 pos = i;
    152             }
    153             const lli mul = fastpow(dat[i][i],mod-2);
    154             ret = ret * dat[i][i] % mod;
    155             for(int k=0;k<len;k++) dat[i][k] = dat[i][k] * mul % mod;
    156             for(int j=0;j<len;j++) if( dat[j][i] && j != i ) {
    157                 const lli mul = dat[j][i];
    158                 for(int k=0;k<len;k++) dat[j][k] = ( dat[j][k] - dat[i][k] * mul % mod  + mod ) % mod;
    159             }
    160         }
    161         return ret;
    162     }
    163 }mtrans,mini,trans,ini,tmp,pows[maxn<<1];
    164 
    165 lli invblst;
    166 
    167 struct Poly {
    168     lli dat[maxn<<2];
    169     Poly(int tpe = 0) {
    170         memset(dat,0,sizeof(dat));
    171         *dat = tpe;
    172     }
    173     lli& operator [] (const int &x) {
    174         return dat[x];
    175     }
    176     const lli& operator [] (const int &x) const {
    177         return dat[x];
    178     }
    179     friend Poly operator * (const Poly &a,const Poly &b) {
    180         Poly ret;
    181         for(int i=0;i<lim<<1;i++)
    182             for(int j=0;j<lim<<1;j++)
    183                 //( ret[i+j] += a[i] * b[j] % mod ) %= mod;
    184                 ret[i+j] += a[i] * b[j] % mod;
    185         for(int i=0;i<lim<<1;i++) ret[i] %= mod;
    186         return ret;
    187     }
    188     friend Poly operator % (const Poly &a,const Poly &b) {
    189         Poly ret = a;
    190         int lst = lim << 1;
    191         while( lst && !b[lst] ) --lst;
    192         for(int i=(lim<<2)-1;i>=lst;i--) if( ret[i] ) {
    193             const int mul = ret[i] * invblst;
    194             for(int j=0;j<=lst;j++) {
    195                 ret[i-j] = ( ret[i-j] - b[lst-j] * mul % mod + mod ) % mod;
    196             }
    197         }
    198         return ret;
    199     }
    200 }pini,ptrans;
    201 
    202 inline void NTT(lli* dst,int n,int ope) {
    203     for(int i=0,j=0;i<n;i++) {
    204         if( i < j ) swap( dst[i] , dst[j] );
    205         for(int t=n>>1;(j^=t)<t;t>>=1) ;
    206     }
    207     for(int len=2;len<=n;len<<=1) {
    208         const int h = len >> 1;
    209         lli per = fastpow(g,mod/(len));
    210         if( !~ope ) per = fastpow(per,mod-2);
    211         for(int st=0;st<n;st+=len) {
    212             lli w = 1;
    213             for(int pos=0;pos<h;pos++) {
    214                 const lli u = dst[st+pos] , v = dst[st+pos+h] * w % mod;
    215                 dst[st+pos] = ( u + v ) % mod ,
    216                 dst[st+pos+h] = ( u - v + mod ) % mod ,
    217                 w = w * per % mod;
    218             }
    219         }
    220     }
    221     if( !~ope ) {
    222         const lli mul = fastpow(n,mod-2);
    223         for(int i=0;i<n;i++) dst[i] = dst[i] * mul % mod;
    224     }
    225 }
    226 
    227 inline void initpoly() {
    228     int len = lim << 2;
    229     for(int i=0;i<len;i++) {
    230         tmp = trans;
    231         ptrans[i] = tmp.pointval(fastpow(g,(mod/len)*i));
    232     }
    233     NTT(ptrans.dat,len,-1);
    234     pini[1] = 1;
    235     int lst = len;
    236     while( !ptrans.dat[lst] ) --lst;
    237     invblst = fastpow(ptrans.dat[lst],mod-2);
    238 }
    239 
    240 struct BigInt {
    241     int dat[maxe],len;
    242     inline void in(const char* s) { // s starts from 0 .
    243         len = strlen(s);
    244         for(int i=0;i<len;i++) dat[i] = s[len-i-1] - '0';
    245     }
    246     inline bool andone() {
    247         return dat[0] & 1;
    248     }
    249     inline void shr() {
    250         for(int i=len-1;~i;i--) {
    251             dat[i-1] += 10 * ( dat[i] & 1 ) ,
    252             dat[i] >>= 1;
    253         }
    254         while( len && !dat[len-1] ) --len;
    255     }
    256     inline bool iszero() {
    257         return len == 0;
    258     }
    259     inline void minusone() {
    260         --dat[0];
    261         for(int i=0;i<len;i++)
    262             if( dat[i] < 0 ) dat[i] += 10 , dat[i+1]--;
    263         while( len && !dat[len-1] ) --len;
    264     }
    265 }l,r;
    266 
    267 bool vis[maxl],nxt[maxl];
    268 int s1,s2,m;
    269 lli ans;
    270 
    271 inline int zip() {
    272     int ret = 0;
    273     for(int i=0;i<6;i++)
    274         ret += ( (int) nxt[i] << i );
    275     return ret;
    276 }
    277 inline void unzip(int sta) {
    278     for(int i=0;i<m;i++)
    279         vis[i] = ( sta >> i ) & 1;
    280 }
    281 inline void dfs(int pos,int sou,lli ways) {
    282     if( pos == m ) {
    283         ( mtrans.dat[sou][zip()] += ways ) %= mod;
    284         return;
    285     }
    286     if( vis[pos] ) return dfs(pos+1,sou,ways);
    287     else {
    288         vis[pos] = nxt[pos] = 1;
    289         dfs(pos+1,sou,ways*s1%mod);
    290         vis[pos] = nxt[pos] = 0;
    291         if( pos != m-1 && !vis[pos+1] ) {
    292             vis[pos] = vis[pos+1] = 1;
    293             dfs(pos+1,sou,ways*s2%mod);
    294             vis[pos] = vis[pos+1] = 0;
    295         }
    296     }
    297 }
    298 
    299 inline Poly fastpow(Poly base,BigInt tim,Poly mod) {
    300     Poly ret(1);
    301     while( !tim.iszero() ) {
    302         if( tim.andone() ) ret = ret * base % mod;
    303         tim.shr();
    304         if( !tim.iszero() ) base = base * base % mod;
    305     }
    306     return ret;
    307 }
    308 
    309 inline void merge(Matrix &dst,const Matrix &sou,int sx,int sy) {
    310     for(int i=0;i<lim;i++)
    311         for(int j=0;j<lim;j++)
    312             dst.dat[i+sx][j+sy] = sou.dat[i][j];
    313 } 
    314 inline void init() {
    315     lim = 1 << m;
    316     for(int i=0;i<lim;i++) {
    317         unzip(i);
    318         dfs(0,i,1);
    319     }
    320     mini.dat[0][0] = 1;
    321     merge(ini,mini,0,0) , merge(ini,mini,0,lim);
    322     merge(trans,mtrans,0,0) , merge(trans,mtrans,0,lim) , merge(trans,Matrix(1),lim,lim);
    323 }
    324 
    325 inline lli calc(BigInt n) {
    326      Matrix ret;
    327      Poly mul = fastpow(pini,n,ptrans);
    328      for(int i=0;i<lim<<1;i++) {
    329         if( mul[i] ) ret = ( ret + pows[i] * mul[i] ); 
    330     }
    331     return ret.dat[0][lim];
    332 }
    333 inline void readin() {
    334     static char buf[5002];
    335     scanf("%s",buf) , l.in(buf);
    336     scanf("%s",buf) , r.in(buf);
    337     l.minusone();
    338 }
    339 
    340 int main() {
    341     readin();
    342     scanf("%d%d%d",&m,&s1,&s2);
    343     init();
    344     initpoly();
    345     pows[0] = ini;
    346     for(int i=1;i<lim<<1;i++) pows[i] = pows[i-1] * trans;
    347     ans = ( calc(r) - calc(l) + mod ) % mod;
    348     printf("%lld
    ",ans);
    349     return 0;
    350 }
    View Code

    T3:


    显然最优的点一定在这条链上,且答案显然单峰。
    我们可以三分这个点,然后用树链剖分线段树计算答案。
    线段树维护一下dis[i]*in[i],(inf-dis[i])*in[i],然后计算的时候花式讨论就好了。
    然而考场上没时间写,打了20分暴力......
    后来发现这样3个log的算法并不能AC,只有65分......
    三分改成求导后二分,大力卡常获得90分......
    还是自己太菜,弃疗了......
    以下是官方题解:


    考场20分代码:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cstdlib>
     6 #define debug cout
     7 typedef long long int lli;
     8 using namespace std;
     9 const int maxn=2.5e3+1e2;
    10 const lli inf=0x3f3f3f3f3f3f3f3fll;
    11 
    12 int s[maxn],t[maxn<<1],nxt[maxn<<1],l[maxn<<1];
    13 int lcas[maxn][maxn];
    14 int siz[maxn],top[maxn],fa[maxn],son[maxn],dep[maxn],dd[maxn];
    15 int seq[maxn],len;
    16 lli in[maxn];
    17 
    18 inline void addedge(int from,int to,int len) {
    19     static int cnt = 0;
    20     t[++cnt] = to , l[cnt] = len ,
    21     nxt[cnt] = s[from] , s[from] = cnt;
    22 }
    23 inline void pre(int pos) {
    24     siz[pos] = 1;
    25     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) {
    26         dep[t[at]] = dep[pos] + 1 , dd[t[at]] = dd[pos] + l[at] , fa[t[at]] = pos ,
    27         pre(t[at]) , siz[pos] += siz[t[at]];
    28         if( siz[t[at]] > siz[son[pos]] ) son[pos] = t[at];
    29     }
    30 }
    31 inline void dfs(int pos) {
    32     top[pos] = pos == son[fa[pos]] ? top[fa[pos]] : pos;
    33     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) dfs(t[at]);
    34 }
    35 inline int lca(int x,int y) {
    36     while( top[x] != top[y] ) {
    37         if( dep[top[x]] < dep[top[y]] ) swap(x,y);
    38         x = fa[top[x]];
    39     }
    40     return dep[x] < dep[y] ? x : y;
    41 }
    42 
    43 inline void chain(int pos,int tar) {
    44     while( pos != tar ) seq[++len] = pos , pos = fa[pos];
    45 }
    46 inline void getchain(int x,int y) {
    47     int l = lcas[x][y]; len = 0;
    48     chain(x,l) , seq[++len] = l;
    49     const int lastlen = len;
    50     chain(y,l);
    51     if( len != lastlen ) reverse(seq+lastlen+1,seq+len+1);
    52 }
    53 inline int dis(int x,int y) {
    54     return dd[x] + dd[y] - ( dd[lcas[x][y]] << 1 );
    55 }
    56 inline lli calc(int pos) {
    57     lli ret = 0;
    58     for(int i=1;i<=len;i++) ret += in[seq[i]] * dis(pos,seq[i]);
    59     return ret;
    60 }
    61 inline lli tri() {
    62     int ll = 1 , rr = len , lmid , rmid;
    63     lli ret = inf;
    64     while( rr > ll + 2 ) {
    65         lmid = ( ll + ll + rr ) / 3 , rmid = ( ll + rr + rr ) / 3;
    66         if( calc(seq[lmid]) < calc(seq[rmid]) ) rr = rmid;
    67         else ll = lmid;
    68     }
    69     for(int i=ll;i<=rr;i++) {
    70         ret = min( ret , calc(seq[i]) );
    71     }
    72     return ret;
    73 }
    74 
    75 int main() {
    76     static int n,m;
    77     scanf("%d",&n);
    78     for(int i=1;i<=n;i++) scanf("%lld",in+i);
    79     for(int i=1,a,b,l;i<n;i++) {
    80         scanf("%d%d%d",&a,&b,&l) ,
    81         addedge(a,b,l) , addedge(b,a,l);
    82     }
    83     pre(1) , dfs(1);
    84     for(int i=1;i<=n;i++) for(int j=1;j<=i;j++) lcas[i][j] = lcas[j][i] = lca(i,j);
    85     scanf("%d",&m);
    86     for(int i=1,o,x,y;i<=m;i++) {
    87         scanf("%d%d%d",&o,&x,&y);
    88         if( o == 1 ) {
    89             getchain(x,y);
    90             printf("%lld
    ",tri());
    91         } else in[x] = y;
    92     }
    93     return 0;
    94 }
    View Code

    65分三分代码:

      1 #pragma GCC optimize(3)
      2 #pragma GCC optimize("Ofast,no-stack-protector")
      3 #pragma GCC optimize("-funsafe-loop-optimizations")
      4 #pragma GCC optimize("-funroll-loops")
      5 #pragma GCC optimize("-fwhole-program")
      6 #include<cstdio>
      7 #include<algorithm>
      8 #include<cctype>
      9 typedef long long int lli;
     10 const int maxn=153000;
     11 const lli inf=0x3f3f3f3f3f3f3f3fll;
     12 
     13 int s[maxn],t[maxn<<1],nxt[maxn<<1],in[maxn];
     14 lli dis[maxn],rdis[maxn]; // rdis root = 1e11 .
     15 int fa[maxn],siz[maxn],dep[maxn],top[maxn],son[maxn],id[maxn],cov[maxn];
     16 int l[maxn<<2],r[maxn<<2],lson[maxn<<2],rson[maxn<<2],prec[maxn<<2],cnt;
     17 int rec[maxn];
     18 
     19 struct Node {
     20     lli s,vs,rvs;
     21     inline void in(const int &x) {
     22         s = ::in[x] , vs = dis[x] * ::in[x] , rvs = rdis[x] * ::in[x];
     23     }
     24     friend Node operator + (const Node &a,const Node &b) {
     25         return (Node){a.s+b.s,a.vs+b.vs,a.rvs+b.rvs};
     26     }
     27     friend Node operator += (Node &a,const Node &b) {
     28         return a = a + b;
     29     }
     30 }ns[maxn<<2];
     31 
     32 inline void build(int pos,const int &ll,const int &rr) {
     33     l[pos] = ll , r[pos] = rr;
     34     if( ll == rr ) return ns[pos].in(prec[pos]=rec[ll]);
     35     const int mid = ( ll + rr ) >> 1;
     36     build(lson[pos]=++cnt,ll,mid) , build(rson[pos]=++cnt,mid+1,rr);
     37     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
     38 }
     39 inline void update(int pos,const int &tar) {
     40     if( l[pos] == r[pos] ) return ns[pos].in(prec[pos]);
     41     const int mid = ( l[pos] + r[pos] ) >> 1;
     42     if( tar <= mid ) update(lson[pos],tar);
     43     else update(rson[pos],tar);
     44     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
     45 }
     46 inline Node query(int pos,const int &ll,const int &rr) {
     47     if( ll <= l[pos] && r[pos] <= rr ) return ns[pos];
     48     const int mid = ( l[pos] + r[pos] ) >> 1;
     49     if( rr <= mid ) return query(lson[pos],ll,rr);
     50     else if( ll > mid ) return query(rson[pos],ll,rr);
     51     return query(lson[pos],ll,rr) + query(rson[pos],ll,rr);
     52 }
     53 inline int kth(int pos,const int &ll,const int &rr,int k) { // k from top to bottom .
     54     if( l[pos] == r[pos] ) return prec[pos];
     55     const int mid = ( l[pos] + r[pos] ) >> 1;
     56     if( rr <= mid ) return kth(lson[pos],ll,rr,k);
     57     else if( ll > mid ) return kth(rson[pos],ll,rr,k);
     58     if( k > mid - std::max(ll,l[pos]) + 1 ) return kth(rson[pos],ll,rr,k-(mid-std::max(ll,l[pos])+1));
     59     else return kth(lson[pos],ll,rr,k);
     60 }
     61 inline int chain_kth(int x,const int &l,int k) { // k from bottom to top .
     62     while( top[x] != top[l] ) {
     63         if( k <= dep[x] - dep[top[x]] + 1 ) {
     64             return kth(cov[top[x]],id[top[x]],id[x],(dep[x]-dep[top[x]]+1)-k+1);
     65         }
     66         else k -= dep[x]-dep[top[x]]+1 , x = fa[top[x]];
     67     }
     68     return kth(cov[top[l]],id[l],id[x],(dep[x]-dep[l]+1)-k+1);
     69 }
     70 inline Node chain(int x,const int &tp) { // includeing top .
     71     Node ret = (Node){0,0,0};
     72     while( top[x] != top[tp] ) {
     73         ret += query(cov[top[x]],id[top[x]],id[x]) , x = fa[top[x]];
     74     }
     75     ret += query(cov[top[x]],id[tp],id[x]);
     76     return ret;
     77 }
     78 inline int lca(int x,int y) {
     79     while( top[x] != top[y] )
     80         if( dep[top[x]] > dep[top[y]] ) x = fa[top[x]];
     81         else y = fa[top[y]];
     82     return dep[x] < dep[y] ? x : y;
     83 }
     84 
     85 inline lli query_corner(const int &p,const int &x,const int &y,const int &l) { // pos at side of x .
     86     lli ret = 0;
     87     Node chainy = chain(y,l) , chainx = chain(x,p) , chainp = chain(p,l);
     88     ret += chainy.vs - chainy.s * dis[l];
     89     ret += chainx.vs - chainx.s * dis[p];
     90     ret += chainp.rvs - chainp.s * rdis[p];
     91     ret += ( chainy.s - in[l] ) * ( dis[p] - dis[l] );
     92     return ret;
     93 }
     94 inline lli query_chain(const int &p,const int &x,const int &y) { // y is the lca .
     95     lli ret = 0;
     96     Node chainx = chain(x,p) , chainp = chain(p,y);
     97     ret += chainx.vs - chainx.s * dis[p];
     98     ret += chainp.rvs - chainp.s * rdis[p];
     99     return ret;
    100 }
    101 inline lli getans(int x,int y) {
    102     if( x == y ) return 0;
    103     int l = lca(x,y);
    104     lli ret = inf;
    105     if( l == x || l == y ) {
    106         if( l != y ) std::swap(x,y);
    107         int ll = 1 , rr = dep[x] - dep[y] + 1 , lmid , rmid , lp , rp , p;
    108         while( rr > ll + 2 ) {
    109             lmid = ( ll + ll + rr ) / 3 , rmid = ( ll + rr + rr ) / 3;
    110             lp = chain_kth(x,y,lmid) , rp = chain_kth(x,y,rmid);
    111             if( query_chain(lp,x,y) < query_chain(rp,x,y) ) rr = rmid;
    112             else ll = lmid;
    113         }
    114         for(int i=ll;i<=rr;i++) {
    115             p = chain_kth(x,y,i);
    116             ret = std::min( ret , query_chain(p,x,y) );
    117         }
    118     } else {
    119         lli sumx = chain(x,l).s , sumy = chain(y,l).s;
    120         if( sumx == sumy ) {
    121             Node chainx = chain(x,l) , chainy = chain(y,l);
    122             return chainx.vs + chainy.vs - dis[l] * (chainx.s+chainy.s);
    123         }
    124         if( sumx < sumy ) std::swap(x,y);
    125         int ll = 1 , rr = dep[x] - dep[l] + 1 , lmid , rmid , lp , rp , p;
    126         while( rr > ll + 2 ) {
    127             lmid = ( ll + ll + rr ) / 3 , rmid = ( ll + rr + rr ) / 3;
    128             lp = chain_kth(x,l,lmid) , rp = chain_kth(x,l,rmid);
    129             if( query_corner(lp,x,y,l) < query_corner(rp,x,y,l) ) rr = rmid;
    130             else ll = lmid;
    131         }
    132         for(int i=ll;i<=rr;i++) {
    133             p = chain_kth(x,l,i);
    134             ret = std::min( ret , query_corner(p,x,y,l) );
    135         }
    136     }
    137     return ret;
    138 }
    139 
    140 inline void addedge(const int &from,const int &to,const int &len) {
    141     static int cnt = 0;
    142     t[++cnt] = to , l[cnt] = len ,
    143     nxt[cnt] = s[from] , s[from] = cnt;
    144 }
    145 inline void pre(int pos) {
    146     siz[pos] = 1;
    147     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) {
    148         fa[t[at]] = pos , dep[t[at]] = dep[pos] + 1 ,
    149         dis[t[at]] = dis[pos] + l[at] , rdis[t[at]] = rdis[pos] - l[at];
    150         pre(t[at]) , siz[pos] += siz[t[at]];
    151         if( siz[t[at]] > siz[son[pos]] ) son[pos] = t[at];
    152     }
    153 }
    154 inline void dfs(int pos) {
    155     top[pos] = pos == son[fa[pos]] ? top[fa[pos]] : pos;
    156     id[pos] = pos == son[fa[pos]] ? id[fa[pos]] + 1 : 1;
    157     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) dfs(t[at]);
    158     if( !son[pos] ) {
    159         for(int i=pos;;i=fa[i]) {
    160             rec[id[i]] = i;
    161             if( i == top[pos] ) break;
    162         }
    163         build(cov[top[pos]]=++cnt,id[top[pos]],id[pos]);
    164     }
    165 }
    166 
    167 const int BS = 1 << 23;
    168 char buf[BS],*st=buf+BS,*ed=buf+BS;
    169 inline char nextchar() {
    170     return *st++;
    171 }
    172 
    173 inline int getint() {
    174     int ret = 0 , ch;
    175     while( !isdigit(ch=nextchar()) );
    176     do ret=ret*10+ch-'0'; while( isdigit(ch=nextchar()) );
    177     return ret;
    178 }
    179 
    180 int main() {
    181     ed = buf + fread(st=buf,1,BS,stdin);
    182     static int n,m;
    183     n = getint();
    184     for(int i=1;i<=n;i++) in[i] = getint();
    185     for(int i=1,a,b,l;i<n;i++) {
    186         a = getint() , b = getint() , l = getint();
    187         addedge(a,b,l) , addedge(b,a,l);
    188     }
    189     rdis[1] = 1e11;
    190     pre(1) , dfs(1);
    191     m = getint();
    192     for(int i=1,o,x,y;i<=m;i++) {
    193         o = getint() , x = getint() , y = getint();
    194         if( o == 1 ) printf("%lld
    ",getans(x,y));
    195         else if( o == 2 ) {
    196             in[x] = y;
    197             update(cov[top[x]],id[x]);
    198         }
    199     }
    200     return 0;
    201 }
    View Code

    90分二分代码:

      1 #pragma GCC optimize(3)
      2 #pragma GCC optimize("Ofast,no-stack-protector")
      3 #pragma GCC optimize("-funsafe-loop-optimizations")
      4 #pragma GCC optimize("-funroll-loops")
      5 #pragma GCC optimize("-fwhole-program")
      6 #include<cstdio>
      7 #include<algorithm>
      8 #include<cctype>
      9 typedef long long int lli;
     10 const int maxn=153000;
     11 const lli inf=0x3f3f3f3f3f3f3f3fll;
     12 
     13 int s[maxn],t[maxn<<1],nxt[maxn<<1],l[maxn<<1],in[maxn];
     14 lli dis[maxn],rdis[maxn]; // rdis root = 1e11 .
     15 int fa[maxn],siz[maxn],dep[maxn],top[maxn],son[maxn],id[maxn],cov[maxn],delta[maxn];
     16 int lson[maxn<<2],rson[maxn<<2],prec[maxn<<2],cnt;
     17 int rec[maxn];
     18 
     19 struct Node {
     20     lli s,vs,rvs;
     21     inline void in(const int &x) {
     22         s = ::in[x] , vs = dis[x] * ::in[x] , rvs = rdis[x] * ::in[x];
     23     }
     24     friend Node operator + (const Node &a,const Node &b) {
     25         return (Node){a.s+b.s,a.vs+b.vs,a.rvs+b.rvs};
     26     }
     27     friend Node operator += (Node &a,const Node &b) {
     28         return a = a + b;
     29     }
     30 }ns[maxn<<2];
     31 
     32 inline void build(int pos,const int &ll,const int &rr) {
     33     if( ll == rr ) return ns[pos].in(prec[pos]=rec[ll]);
     34     const int mid = ( ll + rr ) >> 1;
     35     build(lson[pos]=++cnt,ll,mid) , build(rson[pos]=++cnt,mid+1,rr);
     36     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
     37 }
     38 inline void update(int pos,const int &l,const int &r,const int &tar) {
     39     if( l == r ) return ns[pos].in(prec[pos]);
     40     const int mid = ( l + r ) >> 1;
     41     if( tar <= mid ) update(lson[pos],l,mid,tar);
     42     else update(rson[pos],mid+1,r,tar);
     43     ns[pos] = ns[lson[pos]] + ns[rson[pos]];
     44 }
     45 inline Node query(int pos,const int &l,const int &r,const int &ll,const int &rr) {
     46     if( ll <= l && r <= rr ) return ns[pos];
     47     const int mid = ( l + r ) >> 1;
     48     if( rr <= mid ) return query(lson[pos],l,mid,ll,rr);
     49     else if( ll > mid ) return query(rson[pos],mid+1,r,ll,rr);
     50     return query(lson[pos],l,mid,ll,rr) + query(rson[pos],mid+1,r,ll,rr);
     51 }
     52 inline lli query_sum(int pos,const int &l,const int &r,const int &ll,const int &rr) {
     53     if( ll <= l && r <= rr ) return ns[pos].s;
     54     const int mid = ( l + r ) >> 1;
     55     if( rr <= mid ) return query_sum(lson[pos],l,mid,ll,rr);
     56     else if( ll > mid ) return query_sum(rson[pos],mid+1,r,ll,rr);
     57     return query_sum(lson[pos],l,mid,ll,rr) + query_sum(rson[pos],mid+1,r,ll,rr);
     58 }
     59 inline int kth(int pos,const int &l,const int &r,const int &ll,const int &rr,int k) { // k from top to bottom .
     60     if( l == r ) return prec[pos];
     61     const int mid = ( l + r ) >> 1;
     62     if( rr <= mid ) return kth(lson[pos],l,mid,ll,rr,k);
     63     else if( ll > mid ) return kth(rson[pos],mid+1,r,ll,rr,k);
     64     if( k > mid - std::max(ll,l) + 1 ) return kth(rson[pos],mid+1,r,ll,rr,k-(mid-std::max(ll,l)+1));
     65     else return kth(lson[pos],l,mid,ll,rr,k);
     66 }
     67 inline int chain_kth(int x,const int &l,int k) { // k from bottom to top .
     68     while( top[x] != top[l] ) {
     69         if( k <= dep[x] - dep[top[x]] + 1 ) return kth(cov[top[x]],1,delta[top[x]],id[top[x]],id[x],(dep[x]-dep[top[x]]+1)-k+1);
     70         else k -= dep[x]-dep[top[x]]+1 , x = fa[top[x]];
     71     }
     72     return kth(cov[top[l]],1,delta[top[x]],id[l],id[x],(dep[x]-dep[l]+1)-k+1);
     73 }
     74 inline Node chain(int x,const int &tp) { // includeing top .
     75     Node ret = (Node){0,0,0};
     76     while( top[x] != top[tp] ) {
     77         ret += query(cov[top[x]],1,delta[top[x]],id[top[x]],id[x]) , x = fa[top[x]];
     78     }
     79     ret += query(cov[top[x]],1,delta[top[x]],id[tp],id[x]);
     80     return ret;
     81 }
     82 inline lli chain_sum(int x,const int &tp) { // includeing top .
     83     lli ret = 0;
     84     while( top[x] != top[tp] ) {
     85         ret += query_sum(cov[top[x]],1,delta[top[x]],id[top[x]],id[x]) , x = fa[top[x]];
     86     }
     87     ret += query_sum(cov[top[x]],1,delta[top[x]],id[tp],id[x]);
     88     return ret;
     89 }
     90 inline int lca(int x,int y) {
     91     while( top[x] != top[y] )
     92         if( dep[top[x]] > dep[top[y]] ) x = fa[top[x]];
     93         else y = fa[top[y]];
     94     return dep[x] < dep[y] ? x : y;
     95 }
     96 
     97 inline lli query_corner(const int &p,const int &x,const int &y,const int &l) { // pos at side of x .
     98     lli ret = 0;
     99     Node chainy = chain(y,l) , chainx = chain(x,p) , chainp = chain(p,l);
    100     ret += chainy.vs - chainy.s * dis[l];
    101     ret += chainx.vs - chainx.s * dis[p];
    102     ret += chainp.rvs - chainp.s * rdis[p];
    103     ret += ( chainy.s - in[l] ) * ( dis[p] - dis[l] );
    104     return ret;
    105 }
    106 inline lli query_chain(const int &p,const int &x,const int &y) { // y is the lca .
    107     lli ret = 0;
    108     Node chainx = chain(x,p) , chainp = chain(p,y);
    109     ret += chainx.vs - chainx.s * dis[p];
    110     ret += chainp.rvs - chainp.s * rdis[p];
    111     return ret;
    112 }
    113 inline lli getans(int x,int y) {
    114     if( x == y ) return 0;
    115     int l = lca(x,y);
    116     lli ret = inf;
    117     if( l == x || l == y ) {
    118         if( l != y ) std::swap(x,y); // Now lca = y .
    119         int ll = 1 , rr = dep[x] - dep[y] + 1 , mid , mip;
    120         while( rr > ll + 1 ) {
    121             mid = ( ll + rr ) >> 1 , mip = chain_kth(x,y,mid);
    122             const lli suml = chain_sum(mip,y) , sumr = chain_sum(x,mip);
    123             if( suml < sumr ) rr = mid;
    124             else ll = mid;
    125         }
    126         for(int i=ll,p;i<=rr;++i) {
    127             p = chain_kth(x,y,i);
    128             ret = std::min( ret , query_chain(p,x,y) );
    129         }
    130     } else {
    131         lli sumx = chain_sum(x,l) , sumy = chain_sum(y,l);
    132         if( sumx == sumy ) {
    133             Node chainx = chain(x,l) , chainy = chain(y,l);
    134             return chainx.vs + chainy.vs - dis[l] * (chainx.s+chainy.s);
    135         }
    136         if( sumx < sumy ) std::swap(x,y) , std::swap(sumx,sumy);
    137         sumy -= in[l];
    138         int ll = 1 , rr = dep[x] - dep[l] + 1 , mid , mip;
    139         while( rr > ll + 1 ) {
    140             mid = ( ll + rr ) >> 1 , mip = chain_kth(x,l,mid);
    141             const lli suml = chain_sum(mip,l) + sumy , sumr = chain_sum(x,mip);
    142             if( suml < sumr ) rr = mid;
    143             else ll = mid;
    144         }
    145         for(int i=ll,p;i<=rr;++i) {
    146             p = chain_kth(x,l,i);
    147             ret = std::min( ret , query_corner(p,x,y,l) );
    148         }
    149     }
    150     return ret;
    151 }
    152 
    153 inline void addedge(const int &from,const int &to,const int &len) {
    154     static int cnt = 0;
    155     t[++cnt] = to , l[cnt] = len ,
    156     nxt[cnt] = s[from] , s[from] = cnt;
    157 }
    158 inline void pre(int pos) {
    159     siz[pos] = 1;
    160     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) {
    161         fa[t[at]] = pos , dep[t[at]] = dep[pos] + 1 ,
    162         dis[t[at]] = dis[pos] + l[at] , rdis[t[at]] = rdis[pos] - l[at];
    163         pre(t[at]) , siz[pos] += siz[t[at]];
    164         if( siz[t[at]] > siz[son[pos]] ) son[pos] = t[at];
    165     }
    166 }
    167 inline void dfs(int pos) {
    168     top[pos] = pos == son[fa[pos]] ? top[fa[pos]] : pos;
    169     id[pos] = pos == son[fa[pos]] ? id[fa[pos]] + 1 : 1;
    170     for(int at=s[pos];at;at=nxt[at]) if( t[at] != fa[pos] ) dfs(t[at]);
    171     if( !son[pos] ) {
    172         for(int i=pos;;i=fa[i]) {
    173             rec[id[i]] = i;
    174             if( i == top[pos] ) break;
    175         }
    176         delta[top[pos]] = id[pos];
    177         build(cov[top[pos]]=++cnt,id[top[pos]],id[pos]);
    178     }
    179 }
    180 
    181 const int BS = 1 << 23;
    182 char buf[BS],*st=buf+BS,*ed=buf+BS;
    183 inline char nextchar() {
    184     return *st++;
    185 }
    186 inline void printchar(char x) {
    187     static char buf[1<<22],*st=buf,*ed=buf+(1<<22);
    188     if( x == -1 ) {
    189         fwrite(buf,1,st-buf,stdout);
    190         st = buf;
    191         return;
    192     }
    193     if( st == ed ) fwrite(st=buf,1,1<<22,stdout);
    194     *st++ = x;
    195 }
    196 inline void printint(lli x) {
    197     static int stk[35],top;
    198     if( !x ) {
    199         printchar('0');
    200     } else {
    201         while( x ) stk[++top] = x % 10 , x /= 10;
    202         while( top ) printchar('0'+stk[top--]);
    203     }
    204     printchar('
    ');
    205 }
    206 
    207 inline int getint() {
    208     int ret = 0 , ch;
    209     while( !isdigit(ch=nextchar()) );
    210     do ret=ret*10+ch-'0'; while( isdigit(ch=nextchar()) );
    211     return ret;
    212 }
    213 
    214 int main() {
    215     ed = buf + fread(st=buf,1,BS,stdin);
    216     static int n,m;
    217     n = getint();
    218     for(int i=1;i<=n;++i) in[i] = getint();
    219     for(int i=1,a,b,l;i<n;++i) {
    220         a = getint() , b = getint() , l = getint();
    221         addedge(a,b,l) , addedge(b,a,l);
    222     }
    223     rdis[1] = 1e11;
    224     pre(1) , dfs(1);
    225     m = getint();
    226     for(int i=1,o,x,y;i<=m;++i) {
    227         o = getint() , x = getint() , y = getint();
    228         if( o == 1 ) printint(getans(x,y));
    229         else if( o == 2 ) {
    230             in[x] = y;
    231             update(cov[top[x]],1,delta[top[x]],id[x]);
    232         }
    233     }
    234     printchar(-1);
    235     return 0;
    236 }
    View Code


    最后上神TM卡常的图片......

  • 相关阅读:
    Ajax World 名人堂
    Chrome Flash插件的手动安装方法
    2009年郭红俊的工作
    动画缓冲或叫缓动函数(Animation Easing)
    2008年郭红俊的工作
    Android下调整多媒体音量方法
    游戏中按概率播放某个音效简单c++实现
    string转int 等(转)
    .NET简谈面“.NET技术”向接口编程 狼人:
    改善代码设计 —— 处理概括关系(Dealing w“.NET技术”ith Generalization) 狼人:
  • 原文地址:https://www.cnblogs.com/Cmd2001/p/8562334.html
Copyright © 2020-2023  润新知